[en] Purpose: The aim of this work was to study changes in the tumor microenvironment early after an antiangiogenic treatment using thalidomide (a promising angiogenesis inhibitor in a variety of cancers), with special focus on a possible normalization of the tumor vasculature that could be exploited to improve radiotherapy. Experimental Design: Tumor oxygenation, perfusion, permeability, interstitial fluid pressure (IFP), and radiation sensitivity were studied in an FSAII tumor model. Mice were treated by daily i.p. injection of thalidomide at a dose of 200 mg/kg. Measurements of the partial pressure of oxygen (pO2) were carried out using electron paramagnetic resonance oximetry. Three complementary techniques were used to assess the blood flow inside the tumor: dynamic contrast-enhanced magnetic resonance imaging, Patent Blue staining, and laser Doppler imaging. IFP was measured by a wick-in-needle technique. Results: Our results show that thalidomide induces tumor reoxygenation within 2 days. This reoxygenation is correlated with a reduction in IFP and an increase in perfusion. These changes can be attributed to extensive vascular remodeling that we observed using CD31 labeling. Conclusions: In summary, the microenvironmental changes induced by thalidomide were sufficient to radio-sensitize tumors. The fact that thalidomide radiosensitization was not observed in vitro, and that in vivo radiosensitization occurred in a narrow time window, lead us to believe that initial vascular normalization by thalidomide accounts for tumor radiosensitization. [fr] OBJECTIF: L'objectif de ce travail était d'étudier les changements dans le microenvironnement de la tumeur après un début de traitement anti-angiogénique avec la thalidomide (un inhibiteur de l'angiogenèse prometteurs dans une variété de cancers), avec un accent particulier sur une éventuelle «normalisation» de la vascularisation des tumeurs qui pourraient être exploités pour améliorer la radiothérapie. EXPERIMENTAL DESIGN: Tumor oxygenation, perfusion, permeability, interstitial fluid pressure (IFP), and radiation sensitivity were studied in an FSAII tumor model. CONCEPTION EXPERIMENTALE: oxygénation tumorale, la perfusion, la perméabilité, la pression des fluides interstitiels (IFP), et la sensibilité aux rayons ont été étudiés dans un modèle de tumeur FSAII. Mice were treated by daily ip injection of thalidomide at a dose of 200 mg/kg. Les souris ont été traitées par injection ip quotidienne de la thalidomide à une dose de 200 mg / kg. Measurements of the partial pressure of oxygen (pO(2)) were carried out using electron paramagnetic resonance oximetry. Les mesures de la pression partielle d'oxygène (PO (2)) ont été effectuées en utilisant la résonance paramagnétique électronique oxymétrie. Three complementary techniques were used to assess the blood flow inside the tumor: dynamic contrast-enhanced magnetic resonance imaging, Patent Blue staining, and laser Doppler imaging. IFP was measured by a "wick-in-needle" technique. Trois techniques complémentaires ont été utilisées pour évaluer le flux sanguin dans la tumeur: dynamique renforcée imagerie par résonance magnétique revanche, en matière de brevets coloration au bleu, et le laser Doppler. IFP a été mesurée par une "mèche en aiguille" technique. RESULTS: Our results show that thalidomide induces tumor reoxygenation within 2 days. Résultats: Nos résultats montrent que la thalidomide induit réoxygénation tumorale dans les 2 jours. This reoxygenation is correlated with a reduction in IFP and an increase in perfusion. Cette réoxygénation est corrélée avec une réduction de l'IFP et une augmentation de la perfusion. These changes can be attributed to extensive vascular remodeling that we observed using CD31 labeling. Ces changements peuvent être attribués à un remodelage vasculaire vaste que nous avons observé en utilisant un étiquetage CD31. CONCLUSIONS: In summary, the microenvironmental changes induced by thalidomide were sufficient to radiosensitize tumors. CONCLUSIONS: En résumé, les modifications du microenvironnement induites par la thalidomide ont été suffisantes pour radiosensitize tumeurs. The fact that thalidomide radiosensitization was not observed in vitro, and that in vivo radiosensitization occurred in a narrow time window, lead us to believe that initial vascular normalization by thalidomide accounts for tumor radiosensitization. Le fait que radiosensibilisation thalidomide n'a pas été observé in vitro et in vivo que dans radiosensibilisation s'est produit dans une étroite fenêtre de temps, nous amènent à penser que la normalisation vasculaire initial par les comptes de la thalidomide pour radiosensibilisation tumorale.
Disciplines :
Oncology Radiology, nuclear medicine & imaging
Author, co-author :
ANSIAUX, Reginald; Université Catholique de Louvain - UCL > Laboratory of Biomedical Magnetic Resonance
BAUDELET, Christine; Université Catholique de Louvain - UCL > Laboratory of Biomedical Magnetic Resonance ; Laboratory of Medicinal Chemistry and Radiopharmacy
JORDAN, Bénédicte
BEGHEIN, Nelson; Université Catholique de Louvain - UCL > Laboratory of Biomedical Magnetic Resonance ; Laboratory of Medicinal Chemistry and Radiopharmacy
SONVEAUX, Pierre; Université Catholique de Louvain - UCL > Laboratory of Pharmacology and Therapeutics
DE WEVER, Julie; Université Catholique de Louvain - UCL > Laboratory of Pharmacology and Therapeutics
MARTINIVE, Philippe ; Université Catholique de Louvain - UCL > Laboratory of Pharmacology and Therapeutics
GREGOIRE, Vincent; Université Catholique de Louvain - UCL > Laboratory of BRadiobiology and Radioprotection Unit
FERON, Olivier; Université Catholique de Louvain - UCL > Laboratory of Pharmacology and Therapeutics
Gallez, Bernard
Language :
English
Title :
Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment
Alternative titles :
[fr] Thalidomide radiosensitizes tumeurs grâce à des changements au début de la micro-environnement tumoral.
Publication date :
15 January 2005
Journal title :
Clinical Cancer Research
ISSN :
1078-0432
eISSN :
1557-3265
Publisher :
American Association for Cancer Research, Inc. (AACR), Birmingham, United States - Alabama
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249-57.
Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002;282:C947-70.
Konerding MA, Van Ackern C, Fait E, Steinberg F, Streffer C. Morphological aspects of tumor angiogenesis and microcirculation. In: Molls M, Vaupels P, editors. Blood perfusion and microenvironment of human tumors. Berlin: Springer-Verlag; 1998. p. 5-17.
Munn LL. Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov Today 2003;8:396-403.
Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl 1996;27:247-51.
Burke PA, DeNardo SJ. Antiangiogenic agents and their promising potential in combined therapy. Crit Rev Oncol Hematol 2001;39:155-71.
Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7: 987-9.
Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004;64:3731-6.
Tzuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. VEGF modulation by targeting HIF-1α > HRE > VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 2000;60:6248-52.
Kadambi A, Carreira CM, Yun C, et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment. Cancer Res 2001;61:2404-8.
Hansen-Algenstaedt N, Stoll BR, Padera TP, et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 2000;60:4556-60.
Lee C, Heijn M, Di Tomaso E, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 2000;60:5565-70.
Bello L, Carrabba G, Giussani C, et al. A. Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 2001;61:7501-6.
Shalinsky DR, Brekken J, Zou H, et al. Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cancer lung cancer tumors: single agent and combination chemotherapy studies. Clin Cancer Res 1999;5:1905-17.
Mauceri HJ, Hanna NN, Beckett MA, et al. Combined effect of angiostatin and ionizing radiation in antitumour therapy. Nature 1998; 394:287-91.
Gorski DH, Mauceri HJ, Salloum RM, et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 1998;58:5686-9.
Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999;59:3374-8.
D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994;91:4082-5.
Kenyon BM, Browne F, D'Amato RJ. Effects of thalidomide and related metabolites in mouse corneal model of neovascularization. Exp Eye Res 1997;64:971-8.
Verheul HMW, Panigrahy D, Yuan J, D'Amato RJ. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer 1999;79:114-8.
Von Moos R, Stolz R, Cerny T, Gillessen S. Thalidomide: from tragedy to promise. Swiss Med Wkly 2003;133:77-87.
Volpe JP, Hunter N, Basic I, Milas L. Metastatic properties of murine sarcomas and carcinomas. I. Positive correlation with lung colonization and lack of correlation with s.c. tumor take. Clin Exp Metastasis 1985; 3:281-94.
Jordan BF, Baudelet C, Gallez B. Carbon-centered radicals as oxygen sensors for in vivo electron paramagnetic resonance: screening for an optimal probe among commercially available charcoals. Magn Reson Mater Phys Med Biol 1998;7:121-9.
Gallez B, Jordan BF, Baudelet C, Misson PD. Pharmacological modifications of the partial pressure of oxygen in murine tumors: evaluation using in vivo EPR oximetry. Magn Reson Med 1999;42: 627-30.
Jordan BF, Misson P, Demeure R, Baudelet C, Beghein N, Gallez B. Changes in tumor oxygenation/perfusion induced by the NO donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI. Int J Radiat Oncol Biol Phys 2000; 48:565-70.
Sersa G, Cemazar M, Miklavcic D, Chaplin, DJ. Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res 1999;19:4017-22.
Baudelet C, Gallez B. Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment. Magn Reson Med 2003;49:985-90.
Su MY, Jao JC, Nalcioglu O. Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 1994;32:714-24.
Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 1991;51:6691-4.
Lee I, Boucher Y, Jain RK. Nicotinamide can lower tumor interstitial fluid pressure: mechanistic and therapeutic implications. Cancer Res 1992;52:3237-40.
Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of HS Sultan cells and angiogenesis in vivo. Leukemia 2003;17:41-4.
Fenton BM, Paoni SF, Grimwood BG, Ding I. Disparate effects of endostatin on tumor vascular perfusion and hypoxia in two murine mammary carcinomas. Int J Radiat Oncol Biol Phys 2003;57: 1038-46.
Teicher BA, Holden SA, Ara G, et al. Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer 1995;61:732-7.
Teicher BA, Dupis N, Kusomoto T, et al. Anti-angiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Investig 1995;2:269-76.
Teicher BA, Williams JI, Takeuchi H, Ara G, Herbst RS, Buxton D. Potential of the aminosterol, squalamine in combination therapy in the rat 13762 mammary carcinoma and the murine Lewis lung carcinoma. Anticancer Res 1998;18:2567-73.
Drevs J, Muller-Driver R, Wittig C, et al. PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 2002;62:4015-22.
Milosevic MF, Fyles AW, Hill RP. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int J Radiat Oncol Biol Phys 1999;43:1111-23.
Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993;73:1-78.
Rubin K, Sjoquist M, Gustafsson AM, Isaksson B, Salvessen G, Reed RK. Lowering of tumoral interstitial fluid pressure by prostaglandin E(1) is paralleled by an increased uptake of 51Cr-EDTA. Int J Cancer 2000;86:636-43.
Kinuya S, Kawashima A, Yokoyama K, et al. Cooperative effect of radioimmunotherapy and antiangiogenic therapy with thalidomide in human cancer xenografts. J Nucl Med 2002;43:1084-9.
Lund EL, Bastholm L, Kristjansen PE. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 2000;6:971-8.
Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 2001;61:39-44.
Moreira AL, Friedlander DR, Shif B, Kaplan G, Zagzag D. Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J Neurooncol 1999;43:109-14.
Gutman M, Szold A, Ravid A, Lazauskas T, Merimsky O, Klausner JM. Failure of thalidomide to inhibit tumor growth and angiogenesis in vivo. Anticancer Res 1996;16:3673-7.
Minchinton AI, Fryer KH, Wendt KR, Clow KA, Hayes MM. The effect of thalidomide on experimental tumors and metastases. Anticancer Drugs 1996;7:339-43.
Belo AV, Ferreira MA, Bosco AA, Machado RD, Andrade SP. Differential effects of thalidomide on angiogenesis and tumor growth in mice. Inflammation 2001;25:91-6.