[en] Porous carbons find various applications in catalysis, electrochemical storage or sorption. Prior to use, their particle sizes need however to be controlled according to the targeted application. In this study, the grinding behavior of materials prepared from aqueous resorcinol–formaldehyde mixtures and displaying different pore textures was studied in detail. Both dry polymer gels and pyrolyzed carbon xerogels were compared in terms of particle size distributions after planetary ball-milling.
The results show that the pore texture and the qualitative hardness of the materials have a strong influence on the grinding behavior, especially if carbon xerogels pyrolyzed before grinding are considered. On the other hand, it appears that the milling of polymer gels, followed by a pyrolysis step, is the most efficient way to obtain homogeneous particle size distributions, for all of the investigated mesopore textures. In this case, carbon particles displaying a narrow grain size distribution centered on a mode value near 10 μm are successfully obtained after similar grinding durations, with retention of the mesopore texture of the starting materials. This work also demonstrates the possibility of using mercury intrusion porosimetry as an interesting tool to assess simultaneously the mesopore dimensions and the particle sizes of porous powders.
Disciplines :
Chemistry Chemical engineering
Author, co-author :
Piedboeuf, Marie-Laure ; Université de Liège - ULiège > Département de chimie appliquée > Département de chimie appliquée
Léonard, Alexandre ; Université de Liège - ULiège > Département de chimie appliquée > Ingéniérie électrochimique
Traina, Karl ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Job, Nathalie ; Université de Liège - ULiège > Département de chimie appliquée > Ingéniérie électrochimique
Language :
English
Title :
Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling
Publication date :
03 March 2015
Journal title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
X. Yuan, Y.-J. Chao, Z.-F. Ma, X. Deng, Preparation and characterization of carbon xerogel (CX) and CX-SiO composite as anode material for lithium-ion battery, Electrochem. Commun. 9 (10) (2007) 2591-2595, doi:10.1016/j.elecom.2007.08.004.
Calderón J.C., Mahata N., Pereira M.F.R., Figueiredo J.L., Fernandes V.R., Rangel C.M., Calvillo L., Lázaro M.J., Pastor E. Pt-Ru catalysts supported on carbon xerogels for PEM fuel cells. Int. J. Hydrogen Energy 2012, 37(8):7200-7211. 10.1016/j.ijhydene.2011.12.029.
Frackowiak E., Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39(6):937-950. 10.1016/S0008-6223(00)00183-4.
Zapata-Benabithe Z., Carrasco-Marín F., de Vicente J., Moreno-Castilla C. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances. Langmuir 2013, 29(20):6166-6173. 10.1021/la4007422.
Machado B.F., Gomes H.T., Serp P., Kalck P., Figueiredo J.L., Faria J.L. Carbon xerogel supported noble metal catalysts for fine chemical applications. Catal. Today 2010, 149(3-4):358-364. 10.1016/j.cattod.2009.06.016.
Pereira M.F.R., Soares S.F., Órfão J.J.M., Figueiredo J.L. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 2003, 41(4):811-821. 10.1016/S0008-6223(02)00406-2.
Liu G., Ma J., Li X., Qin Q. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. J. Hazard. Mater. 2009, 164(2-3):1275-1280. 10.1016/j.jhazmat.2008.09.038.
Job N., Pirard R., Marien J., Pirard J.-P. Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 2004, 42(3):619-628. 10.1016/j.carbon.2003.12.072.
Job N., Théry A., Pirard R., Marien J., Kocon L., Rouzaud J.-N., Béguin F., Pirard J.-P. Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 2005, 43(12):2481-2494. 10.1016/j.carbon.2005.04.031.
Scherdel C., Gayer R., Reichenauer G. Porous organic and carbon xerogels derived from alkaline aqueous phenol-formaldehyde solutions. J. Porous Mater. 2012, 19(3):351-360. 10.1007/s10934-011-9481-x.
Job N., Marie J., Lambert S., Berthon-Fabry S., Achard P. Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers. Manage. 2008, 49(9):2461-2470. 10.1016/j.enconman.2008.03.025.
Job N., Berthon-Fabry S., Chatenet M., Marie J., Brigaudet M., Pirard J.-P. Nanostructured carbons as platinum catalyst supports for proton exchange membrane fuel cell electrodes. Top. Catal. 2009, 52(13-20):2117-2122. 10.1007/s11244-009-9384-0.
Carbon Materials for Catalysis 2009, 535-572. J. Wiley and Sons. V. Arunajatesan, B. Chen, K. Möbus, D. Ostgard, T. Tacke, D. Wolff, P. Serp, J.L. Figueiredo (Eds.).
Honda G.S., Gase P., Hickman D.A., Varma A. Hydrodynamics of trickle bed reactors with catalyst support particle size distributions. Ind. Eng. Chem. Res. 2014, 53(22):9027-9034. 10.1021/ie403491x.
Pirard S.L., Diverchy C., Hermans S., Devillers M., Pirard J.-P., Job N. Kinetics and diffusional limitations in nanostructured heterogeneous catalyst with controlled pore texture. Catal. Commun. 2011, 12(6):441-445. 10.1016/j.catcom.2010.11.002.
Shindo K., Kondo T., Sakurai Y. Influence of milling conditions on hydrogen storage capacities of activated carbon mechanically milled in an H2 atmosphere. J. Alloys Compd. 2005, 397(1-2):216-219. 10.1016/j.jallcom.2004.11.074.
Choi W.-S., Shim W.-G., Ryu D.-W., Hwang M.-J., Moon H. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Micropor. Mesopor. Mater. 2012, 155(0):274-280. 10.1016/j.micromeso.2012.01.006.
Doeff M.M., Wilcox J.D., Kostecki R., Lau G. Optimization of carbon coatings on LiFePO4. J. Power Sources 2006, 163(1):180-184. 10.1016/j.jpowsour.2005.11.075.
Disma F., Aymard L., Dupont L., Tarascon J.M. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons. J. Electrochem. Soc. 1996, 143(12):3959-3972. 10.1149/1.1837322.
Salver-Disma F., Lenain C., Beaudoin B., Aymard L., Tarascon J.M. Unique effect of mechanical milling on the lithium intercalation properties of different carbons. Solid State Ionics 1997, 98(3-4):145-158. 10.1016/S0167-2738(97)00108-2.
Washburn E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. U.S.A. 1921, 7:115-116.
Park J., Regalbuto J.R., Simple A. Accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 1995, 239-252. 10.1006/jcis.1995.1452.
Zanto E.J., Ritter J.A., Popov B.N. Sol-gel derived carbon aerogels and xerogels for use as the anode in the lithium ion battery. Proc. Electrochem. Soc. 1999, 98(16 Lithium Batteries):71-81.
Dahn J., Ehrlich J.D.G. Linden's Handbook of Batteries 2011, Mac Graw Hill, p. 26.42. fourth edition. T.B. Reddy (Ed.).
Xing W., Dunlap R.A., Dahn J.R. Studies of lithium insertion in ballmilled sugar carbons. J. Electrochem. Soc. 1998, 145(1):62-70. 10.1149/1.1838212.
Ong T.S., Yang H. Effect of atmosphere on the mechanical milling of natural graphite. Carbon 2000, 38(15):2077-2085. 10.1016/S0008-6223(00)00064-6.
Chevallier F., Aymard L., Tarascon J.-M. Influence of oxygen and hydrogen milling atmospheres on the electrochemical properties of ballmilled graphite. J. Electrochem. Soc. 2001, 148(11):A1216-A1224. 10.1149/1.1405800.
Janot R., Guérard D. Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon 2002, 40(15):2887-2896. 10.1016/S0008-6223(02)00223-3.
Alcántara R., Lavela P., Ortiz G.F., Tirado J.L., Menéndez R., Santamaría R., Jiménez-Mateos J.M. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon 2003, 41(15):3003-3013. 10.1016/S0008-6223(03)00432-9.
Pospech R., Schneider P. Powder particle sizes from mercury porosimetry. Powder Technol. 1989, 59:163-171.
Lecloux A.J. Texture of catalysts. Catalysis, Science and Technology 1981, vol. 2. Springer-Verlag, Berlin.
Nguyen C., Do D.D. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 2001, 39(9):1327-1336. 10.1016/S0008-6223(00)00265-7.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.