[fr] L'hypoxie est une caractéristique commune des tumeurs associées à une résistance accrue des cellules tumorales aux traitements. In addition to O 2 diffusion–limited hypoxia, another form of tumor hypoxia characterized by fluctuating changes in p O 2 within the disorganized tumor vascular network is described. En plus de O 2-limité hypoxie de diffusion, une autre forme d'hypoxie tumorale caractérisée par la fluctuation des changements dans p O 2 dans la tumeur désorganisé réseau vasculaire est décrite. Here, we postulated that this form of intermittent hypoxia promotes endothelial cell survival, thereby extending the concept of hypoxia-driven resistance to the tumor vasculature. Ici, nous avons postulé que cette forme de l'hypoxie intermittente favorise la survie des cellules endothéliales, ce qui étend la notion de résistance à l'hypoxie axée sur la vascularisation des tumeurs. We found that endothelial cell exposure to cycles of hypoxia reoxygenation not only rendered them resistant to proapoptotic stresses, including serum deprivation and radiotherapy, but also increased their capacity to migrate and organize in tubes. Nous avons trouvé que l'exposition des cellules endothéliales à des cycles de réoxygénation hypoxie non seulement rendus plus résistantes aux contraintes pro-apoptotiques, y compris la privation de sérum et de la radiothérapie, mais aussi accru leur capacité à migrer et à organiser dans les tubes. By contrast, prolonged hypoxia failed to exert protective effects and even seemed deleterious when combined with radiotherapy. En revanche, l'hypoxie prolongée n'a pas d'exercer des effets protecteurs et semblait même nocive en combinaison avec la radiothérapie. The use of hypoxia-inducible factor-1α (HIF-1α)–targeting small interfering RNA led us to document that the accumulation of HIF-1α during intermittent hypoxia accounted for the higher resistance of endothelial cells. L'utilisation de hypoxia-inducible factor-1α (HIF-1α)-ciblage des petits ARN interférents nous a conduit au document que l'accumulation de HIF-1α au cours de l'hypoxie intermittente représentaient la plus grande résistance des cellules endothéliales. We also used an in vivo approach to enforce intermittent hypoxia in tumor-bearing mice and found that it was associated with less radiation-induced apoptosis within both the vascular and the tumor cell compartments (versus normoxia or prolonged hypoxia). Nous avons également utilisé une approche in vivo d'appliquer hypoxie intermittente en portant une tumeur des souris et ont constaté qu'elle était associée à une apoptose induite par radiation moins dans les deux compartiments vasculaires et les cellules tumorales (par rapport à la normoxie ou d'hypoxie prolongée). Radioresistance was further ascertained by an increased rate of tumor regrowth in irradiated mice preexposed to intermittent hypoxia and confirmed in vitro using distinctly radiosensitive tumor cell lines. Radiorésistance a également été constatée par une augmentation du taux de repousse des tumeurs chez des souris irradiées préexposés à une hypoxie intermittente et confirmée in vitro en utilisant distinctement radiosensibles lignées de cellules tumorales. In conclusion, we have documented that intermittent hypoxia may condition endothelial cells and tumor cells in such a way that they are more resistant to apoptosis and more prone to participate in tumor progression. En conclusion, nous avons démontré que l'hypoxie intermittente peut conditionner les cellules endothéliales et les cellules tumorales de telle sorte qu'ils sont plus résistants à l'apoptose et plus enclins à participer à la progression tumorale. Our observations also underscore the potential of drugs targeting HIF-1α to resensitize the tumor vasculature to anticancer treatments. Nos observations soulignent également le potentiel de médicaments ciblant HIF-1α à resensitize la vascularisation des tumeurs aux traitements anticancéreux. (Cancer Res 2006; 66(24): 11736-44) (Cancer Res 2006; 66 (24): de 11736 à 44) [en] Hypoxia is a common feature in tumors associated with an increased resistance of tumor cells to therapies. In addition to O2 diffusion–limited hypoxia, another form of tumor hypoxia characterized by fluctuating changes in pO2 within the disorganized tumor vascular network is described. Here, we postulated that this form of intermittent hypoxia promotes endothelial cell survival, thereby extending the concept of hypoxia-driven resistance to the tumor vasculature. We found that endothelial cell exposure to cycles of hypoxia reoxygenation not only rendered them resistant to proapoptotic stresses, including serum deprivation and radiotherapy, but also increased their capacity to migrate and organize in tubes. By contrast, prolonged hypoxia failed to exert protective effects and even seemed deleterious when combined with radiotherapy. The use of hypoxia-inducible factor-1α (HIF-1α)–targeting small interfering RNA led us to document that the accumulation of HIF-1α during intermittent hypoxia accounted for the higher resistance of endothelial cells. We also used an in vivo approach to enforce intermittent hypoxia in tumor-bearing mice and found that it was associated with less radiation-induced apoptosis within both the vascular and the tumor cell compartments (versus normoxia or prolonged hypoxia). Radioresistance was further ascertained by an increased rate of tumor regrowth in irradiated mice preexposed to intermittent hypoxia and confirmed in vitro using distinctly radiosensitive tumor cell lines. In conclusion, we have documented that intermittent hypoxia may condition endothelial cells and tumor cells in such a way that they are more resistant to apoptosis and more prone to participate in tumor progression. Our observations also underscore the potential of drugs targeting HIF-1α to resensitize the tumor vasculature to anticancer treatments. (Cancer Res 2006; 66(24): 11736-44)
Preconditioning of the Tumor Vasculature and Tumor Cells by Intermittent Hypoxia: Implications for Anticancer Therapies
Alternative titles :
[fr] Préconditionnement de la vascularisation des tumeurs et des cellules tumorales par l'hypoxie intermittente: Implications pour les traitements anticancéreux
Publication date :
15 December 2006
Journal title :
Cancer Research
ISSN :
0008-5472
eISSN :
1538-7445
Publisher :
American Association for Cancer Research, Inc. (AACR), Baltimore, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38-47.
Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266-76.
Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer Res 1996;16:741-9.
Dewhirst MW. Mechanisms underlying hypoxia development in tumors. Adv Exp Med Biol 2003;510:51-6.
Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9:685-93.
Intaglietta M, Myers RR, Gross JF, Reinhold HS. Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl Anat 1977;15:273-6.
Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl 1996;27:S247-51.
Feron O. Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol Sci 2004;25:536-42.
Chaplin DJ, Hill SA. Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. Br J Cancer 1995;71:1210-3.
Lanzen J, Braun RD, Klitzman B, Brizel D, Secomb TW, Dewhirst MW. Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Res 2006;66:2219-23.
Braun RD, Lanzen JL, Dewhirst MW. Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am J Physiol 1999;277:H551-68.
Kimura H, Braun RD, Ong ET, et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 1996;56:5522-8.
Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am J Physiol 1994;266:H1822-8.
Chaplin DJ, Olive PL, Durand RE. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47:597-601.
Coleman CN. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst 1988;80:310-7.
Brurberg KG, Graff BA, Rofstad EK. Temporal heterogeneity in oxygen tension in human melanoma xenografts. Br J Cancer 2003;89:350-6.
Gilead A, Neeman M. Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice. Neoplasia 1999;1:226-30.
Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL. Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ Res 2001;89:732-9.
Baudelet C, Ansiaux R, Jordan BF, Havaux X, Macq B, Gallez B. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys Med Biol 2004;49:3389-411.
Brurberg KG, Skogmo HK, Graff BA, Olsen DR, Rofstad EK. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy. Radiother Oncol 2005;77:220-6.
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-9.
Kirkpatrick JP, Cardenas-Navia LI, Dewhirst MW. Predicting the effect of temporal variations in PO2 on tumor radiosensitivity. Int J Radiat Oncol Biol Phys 2004;59:822-33.
Rofstad EK, Maseide K. Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours. Int J Radiat Biol 1999;75:1377-93.
Durand RE. Intermittent blood flow in solid tumours-an under-appreciated source of "drug resistance." Cancer Metastasis Rev 2001;20:57-61.
Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 2003;20:237-50.
Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000;76:589-605.
Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 2004;64:2054-61.
Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 2001;61:8903-8.
Dewhirst MW, Ong ET, Klitzman B, et al. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat Res 1992;130:171-82.
Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt 2005;10:44004.
Taper HS, Woolley GW, Teller MN, Lardis MP. A new transplantable mouse liver tumor of spontaneous origin. Cancer Res 1966;26:143-8.
Sonveaux P, Brouet A, Havaux X, et al. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 2003;63:1012-9.
Brouet A, Dewever J, Martinive P, et al. Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J 2005;19:602-4.
Sonveaux P, Martinive P, Dewever J, et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 2004;95:154-61.
Michel G, Minet E, Mottet D, Remacle J, Michiels C. Site-directed mutagenesis studies of the hypoxia-inducible factor-1α DNA-binding domain. Biochim Biophys Acta 2002;1578:73-83.
Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 2002;48:980-6.
Baudelet C, Cron GO, Ansiaux R, et al. The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR Biomed 2006;19:69-76.
Bennewith KL, Durand RE. Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 2004;64:6183-9.
Erickson K, Braun RD, Yu D, et al. Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation. Cancer Res 2003;63:4705-12.
Moeller BJ, Cao Y, Vujaskovic Z, Li CY, Haroon ZA, Dewhirst MW. The relationship between hypoxia and angiogenesis. Semin Radiat Oncol 2004;14:215-21.
D'Angelo G, Duplan E, Boyer N, Vigne P, Frelin C. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 2003;278:38183-7.
Dachs GU, Tozer GM. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer 2000;36:1649-50.
Zhang X, Kon T, Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1α. Cancer Res 2004;64:8139-42.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32.
Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429-41.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.