Hopwood DA. 2007. Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York, NY.
Loria R, Kers J, Joshi M. 2006. Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487.http://dx.doi.org/10.1146/annurev.phyto.44.032905.091147.
Loria R, Bignell DR, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF, Gibson DM. 2008. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94: 3–10.http://dx.doi.org/10.1007/s10482-008-9240-4.
Johnson EG, Krasnoff SB, Bignell DR, Chung WC, Tao T, Parry RJ, Loria R, Gibson DM. 2009. 4-Nitrotryptophan is a substrate for the nonribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway. Mol Microbiol 73:409–418.http://dx.doi.org/10.1111/j.1365-2958.2009.06780.x.
Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL. 2012. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8:814–816.http://dx.doi.org/10.1038/nchembio.1048.
Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville CR. 2003. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15:1781–1794.http://dx.doi.org/10.1105/tpc.013342.
Bischoff V, Cookson SJ, Wu S, Scheible WR. 2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J Exp Bot 60:955–965.http://dx.doi.org/10.1093/jxb/ern344.
Bignell DR, Francis I, Fvans J, Loria R. 2014. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact 27:875–885.http://dx.doi.org/10.1094/MPMI-02-14-0037-R.
Joshi MV, Bignell DR, Johnson EG, Sparks JP, Gibson DM, Loria R. 2007. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 66:633–642.http://dx.doi.org/10.1111/j.1365-2958.2007.05942.x.
Wach MJ, Krasnoff SB, Loria R, Gibson DM. 2007. Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies. Arch Microbiol 188:81–88.http://dx.doi.org/10.1007/s00203-007-0225-x.
Lauzier A, Simao-Beaunoir AM, Bourassa S, Poirier GG, Talbot B, Beaulieu C. 2008. Effect of potato suberin on Streptomyces scabies proteome. Mol Plant Pathol 9:753–762.http://dx.doi.org/10.1111/j.1364-3703.2008.00493.x.
Schlösser A, Aldekamp T, Schrempf H. 2000. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli. FEMS Microbiol Lett 190:127–132.http://dx.doi.org/10.1111/j.1574-6968.2000.tb09274.x.
Schlösser A, Jantos J, Hackmann K, Schrempf H. 1999. Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli. Appl Environ Microbiol 65:2636–2643.
Marushima K, Ohnishi Y, Horinouchi S. 2009. CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus. J Bacteriol 191:5930–5940.http://dx.doi.org/10.1128/JB.00703-09.
Hiard S, Marée R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S. 2007. PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357:861–864.http://dx.doi.org/10.1016/j.bbrc.2007.03.180.
Guan D, Grau BL, Clark CA, Taylor CM, Loria R, Pettis GS. 2012. Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of streptomyces soil rot disease of sweet potato. Mol Plant Microbe Interact 25:393–401.http://dx.doi.org/10.1094/MPMI-03-11-0073.
Johnson EG, Joshi MV, Gibson DM, Loria R. 2007. Cellooligosaccharides released from host plants induce pathogenicity in scabcausing Streptomyces species. Physiol Mol Plant Pathol 71:18–25.http://dx.doi.org/10.1016/j.pmpp.2007.09.003.
Yang J, Tauschek M, Robins-Browne RM. 2011. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol 19:128–135.http://dx.doi.org/10.1016/j.tim.2010.12.001.
Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP. 2008. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675.http://dx.doi.org/10.1038/embor.2008.83.
Craig M, Lambert S, Jourdan S, Tenconi E, Colson S, Maciejewska M, Ongena M, Martin JF, van Wezel G, Rigali S. 2012. Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. Environ Microbiol Rep 4:512–521.http://dx.doi.org/10.1111/j.1758-2229.2012.00354.x.
Lambert S, Traxler MF, Craig M, Maciejewska M, Ongena M, van Wezel GP, Kolter R, Rigali S. 2014. Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 6:1390–1399.http://dx.doi.org/10.1039/c4mt00068d.
Chi WJ, Lee SY, Lee J. 2011. Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans. J Microbiol 49:828–833.http://dx.doi.org/10.1007/s12275-011-1100-7.
Aigle B, Corre C. 2012. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 517:343–366.http://dx.doi.org/10.1016/B978-0-12-404634-4.00017-6.
Zhu H, Sandiford SK, van Wezel GP. 2014. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41:371–386.http://dx.doi.org/10.1007/s10295-013-1309-z.
Yoon V, Nodwell JR. 2014. Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 41:415–424.http://dx.doi.org/10.1007/s10295-013-1387-y.
Świçtek MA, Urem M, Tenconi E, Rigali S, van Wezel GP. 2012. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3:280–285.http://dx.doi.org/10.4161/bioe.21371.
Martín JF, Liras P. 2010. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273.http://dx.doi.org/10.1016/j.mib.2010.02.008.
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Fondation, Norwich, United Kingdom.
Rigali S, Nivelle R, Tocquin P. 6 November 2014. On the necessity and biological significance of threshold-free regulon prediction outputs. Mol Biosyst. http://dx.doi.org/10.1039/C4MB00485J.
Świçtek MA, Tenconi E, Rigali S, van Wezel GP. 2012. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194:1136–1144.http://dx.doi.org/10.1128/JB.06370-11.
Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S. 2008. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154:373–382.http://dx.doi.org/10.1099/mic.0.2007/011940-0.
Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546.http://dx.doi.org/10.1073/pnas.0337542100.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol Plant 15:473–497.http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x.
Loria R, Bukhalid RA, Creath RA, Leiner RH, Olivier M, Steffens JC. 1995. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85:537–541.http://dx.doi.org/10.1094/Phyto-85-537.