Kumar A, Hartland S. Correlation for prediction of mass transfer coefficient in single drop systems and liquid liquid extraction column. Transactions of the Institution of Chemical Engineers 1999; 77A:372-384.
Lenard P. Über Regen, Meteorologische Zeitschrift 1904; 6:249-262.
Pruppacher HR. Beard KV. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of Royal Meteorological Society 1970: 96:247-256.
Horton TJ, Fritsch TR, Kintner RC. Experimental determination of circulation velocities inside drops. Canadian Journal of Chemical Engineering 1965: 143-146.
Hadamard JS. Mouvement Permanent Lent d'une Sphère Liquide et Visqueuse dans un Liquide Visqueux. Comptes Rendus Hebdomadaires des Seances de l'Academic des Sciences 1911; 152:1735-1743.
Rybczynski W. Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bulletin International de Academie des Sciences de Cracovic 1911: 40-46.
Chao BT. Motion of spherical gas bubbles in a viscous liquid at large Reynolds numbers, Physics of Fluids 1962; 5:69-79.
Haas U. Schmidt-Traub H, Brauer H. Umströmung kugelförmiger Blasen mit innerer Zirkulation. Chemie Ingenieur Technik 1972; 44:1060-1068.
Hamielec E. Johnson Al. Viscous flow around fluid spheres at intermediate Reynolds numbers (1). Canadian Journal of Chemical Engineering 1962; 41-45.
LeClair BP, Hamielce AE, Pruppacher HR, Hall WD. A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. Journal of Atmospheric Science 1972; 29: 728-740.
Brander B, Brauer H. Impuls- und Stofftransport dutch die Phasengrenzfläche von kugelförmigen fluiden Partikeln. Fortschritt-Berichte VDI, Reihe 3: Verfahrenstechnik, Nr. 326, VDI Verlag: Dusseldeof, 1993.
Wham RM, Basaran OA, Byers CH. Wall effects on flow past fluid spheres at finite Reynolds number: wake structure and drag correlations. Chemical Engineering Science 1997: 52:3345-3367.
Hartholt GP, Holfmann AC. Janssen LPBM. Finite element calculations of flow past a spherical bubble rising on the axis of a cylindrical tube. Zeirschrift für Angewandte Mathematik und Physik 1994: 45: 733-745.
Wasowski T, Bla E. Wake-Phänomene hinter festen und fluiden Partikeln. Chemie Ingenieur Technik 1987: 59:544-555.
Oliver DLR, Chung JN. Steady flows inside and around a fluid sphere at low Reynolds number. Journal of Fluid Mechanics 1985: 154:215-230.
Satapathy R, Smith W. The motion of single immiscible drops through a liquid. Fluid Mechanics 1960; 10:561-570.
Henschke M. Waheed MA. Pfennig A. Wandeinfluss auf die Sedimentationsgeschwindigkeit von Kugeln. Chemie Ingenieur Technik 2000: 72:1376-1380.
Le Clair BP, Hamielec AE, Pruppacher HR. A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. Journal of Atmospheric Science 1970; 27:308-315.
Sepran, A finite element code. Sepran Introduction. programmers Guide, Sepran Standard Problems and Users Manual, Ingeniursbureau Sepra, 2264 EB Leidschendam. Niederlande, 1999.
Cuvelier C, Segal A, van Steenhoven AA. Finite Element Methods and Navier-Stokes Equations. D. Reidel Publishing Company: Dordrecht, Holland, 1986.
Chung TJ. Finite Elemente in der Strömungsmechanik. Hanser München, Wien, 1983.
Tezduyar TE, Ganjoo DK. Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: application to transient convection diffusion problem. Computer Methods in Applied Mechanics and Engineering 1986: 59:49-71.
Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. Wiley: New York, London, 1960.
Kalra TR, Uhlherr PHT. Geometry of bluff body wakes. Canadian Journal of Chemical Engineering 1973; 51:655-658.
Pruppacher HR, Le Clair BP. Hamielec AE. Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers. Journal of Fluid Mechanics 1970; 44:781-790.
Lin CL, Lee SC. Transient state analysis of separated flow around a sphere. Computer and Fluids 1973; 1:235-250.
Rivkind VY, Ryskin GM, Fishbein GA. Flow around a spherical drop in a fluid medium at intermediate Reynolds numbers. Applied Mathematics and Mechanics 1976; 40:687-691.
Feng Z, Michaelides EE. Drag coefficients of viscous spheres at intermediates and high Reynolds numbers. ASME Journal of Fluids Engineering 2001; 123:841-849.
Winnikow S, Chao BT. Droplet motion in purified system. Physics of Fluids 1966; 9(1):50-61.
Clift R, Grace JR, Weber ME. Bubbles, Drops and Particles. Academic Press: New York, 1978.
Thorsen G. Stordalen RM, Teriesen SG. On the terminal velocity of circulating and oscillating liquid drops. Chemical Engineering Science 1968; 23:413-426.
Jamialahmadi M, Branch C, Müller-Steinhagen H. Terminal bubble rise velocity in liquids. Transactions of the Institution of Chemical Engineers 1994; 72:119-122.
Maneri CC. New look at wave analog for prediction of bubble velocities. A.I.Ch.E. Journal 1995; 41: 481-487.
Grace JR, Wairegi T. Properties and characteristics of drops and bubbles. Encyclopedia of Fluid Mechanics 1986; 3:43-57.
Wesselingh JA. The velocity of particles, drops and bubbles. Chemical Engineering Process 1987; 21:9-14.