NOTICE: this is the author’s version of a work that was accepted for publication in Composite Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composite Structures 126, 2015 DOI: 10.1016/j.compstruct.2015.02.070
All documents in ORBi are protected by a user license.
[en] The failure of carbon fiber reinforced epoxy laminates is studied using an anisotropic gradient-enhanced continuum damage model embedded in a mean-field homogenization scheme.
In each ply, a homogenized material law is used to capture the intra-laminar failure. The anisotropy of the homogenized material model results from the homogenization method and from the reformulation of the non-local continuum damage theory to account for the material anisotropy. As a result the damage propagation direction in each ply is predicted with accuracy as compared to the experimental results, while the problems of losing uniqueness and strain localization, which occur in classical finite element simulations when strain softening of materials is involved, can be avoided.
To model the delamination process, the hybrid discontinuous Galerkin/extrinsic cohesive law method is introduced at the ply interfaces. This hybrid method avoids the need to propagate topological changes in the mesh with the propagation of the delamination while it preserves the consistency and stability in the un-cracked interfaces.
As a demonstration, open-hole coupons with different stacking sequences are studied numerically and experimentally.
Both the intra- and inter-laminar failure patterns are shown to be well captured by the computational framework.
FP7 - 235303 - MATERA+ - ERA-NET Plus on Materials Research
Name of the research project :
SIMUCOMP and ERA-NET MATERA+ project financed by the Fonds National de la Recherche (FNR) of Luxembourg, the Consejerıa de Educacion y Empleo of the Comunidad de Madrid, the Walloon region (agreement no 1017232, CT-EUC2010-10-12), and by the European Union’s Seventh Framework Programme (FP7/2007-2013).
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 Consejeria de Educacion y Empleo of Comunidad de Madrid FNR - Fonds National de la Recherche F.R.S.-FNRS - Fonds de la Recherche Scientifique CE - Commission Européenne
Ladevèze P., Lubineau G., Marsal D. Towards a bridge between the micro- and mesomechanics of delamination for laminated composites. Compos Sci Technol 2006, 66(6):698-712. ISSN 0266-3538. 10.1016/j.compscitech.2004.12.026.
Maimí P., Camanho P., Mayugo J., Dávila C. A continuum damage model for composite laminates: Part I-Constitutive model. Mech Mater 2007, 39(10):897-908.
Maimí P., Camanho P., Mayugo J., Dávila C. A continuum damage model for composite laminates: Part II-computational implementation and validation. Mech Mater 2007, 39(10):909-919. ISSN 0167-6636.
LLorca J., González C., Molina-Aldareguía J.M., Segurado J., Seltzer R., Sket F., et al. Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 2011, 23(44):5130-5147. ISSN 1521-4095. 10.1002/adma.201101683.
Pinho S., Iannucci L., Robinson P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Composites Part A 2006, 37(5):766-777. ISSN 1359-835X.
Camanho P., Maimí P., Dávila C. Prediction of size effects in notched laminates using continuum damage mechanics. Compos Sci Technol 2007, 67(13):2715-2727. ISSN 0266-3538. 10.1016/j.compscitech.2007.02.005.
Allix O., Feissel P., Thévenet P. A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues. Comput Struct 2003, 81(12):1177-1191. ISSN 0045-7949, advanced Computational Models and Techniques in Dynamics. 10.1016/S0045-7949(03)00035-X.
Vigueras G., Sket F., Samaniego C., Wu L., Noels L., Tjahjanto D., Casoni E., Houzeaux G., Makradi A., Molina-Aldareguia J.M., Vazquez M., Jérusalem A. An XFEM/CZM implementation for massively parallel simulations of composites fracture. Compos Struct 2015, 125:542-557. 10.1016/j.compstruct.2015.01.053.
van der Meer F., Sluys L. A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract 2009, 158(2):107-124. ISSN 0376-9429. 10.1007/s10704-009-9344-5.
Kanouté P., Boso D., Chaboche J., Schrefler B. Multiscale methods for composites: a review. Arch Comput Methods Eng 2009, 16:31-75. ISSN 1134-3060. 10.1007/s11831-008-9028-8.
Geers M., Kouznetsova V., Brekelmans W. Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 2010, 234(7):2175-2182. ISSN 0377-0427. 10.1016/j.cam.2009.08.077.
Doghri I., Brassart L., Adam L., Gérard J.S. A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int J Plast 2011, 27(3):352-371. ISSN 0749-6419. 10.1016/j.ijplas.2010.06.004.
Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc London Ser A Math Phys Sci 1957, 241(12):376-396. ISSN 00804630.
Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973, 21(5):571-574. cited by (since 1996) 1814.
Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mech Mater 1987, 6(2):147-157. ISSN 0167-6636. 10.1016/0167-6636(87)90005-6.
Kröner E. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys A Hadrons Nucl 1958, 151:504-518. ISSN 0939-7922. 10.1007/BF01337948.
Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids 1965, 13(4):213-222. ISSN 0022-5096. 10.1016/0022-5096(65)90010-4.
Pettermann H.E., Plankensteiner A.F., Böhm H.J., Rammerstorfer F.G. A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput Struct 1999, 71(2):197-214. ISSN 0045-7949. 10.1016/S0045-7949(98)00208-9.
Doghri I., Ouaar A. Homogenization of two-phase elasto-plastic composite materials and structures: study of tangent operators, cyclic plasticity and numerical algorithms. Int J Solids Struct 2003, 40(7):1681-1712. ISSN 0020-7683. 10.1016/S0020-7683(03)00013-1.
Chaboche J., Kanouté P., Roos A. On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int J Plast 2005, 21(7):1409-1434. ISSN 0749-6419. 10.1016/j.ijplas.2004.07.001.
Doghri I., Tinel L. Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int J Plast 2005, 21(10):1919-1940. ISSN 0749-6419. 10.1016/j.ijplas.2004.09.003.
Pierard O., Doghri I. Study of various estimates of the macroscopic tangent operator in the incremental homogenization of elastoplastic composites. Int J Multiscale Comput Eng 2006, 4(4):521-543. ISSN 1543-1649.
Pierard O., LLorca J., Segurado J., Doghri I. Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. Int J Plast 2007, 23(6):1041-1060. ISSN 0749-6419. 10.1016/j.ijplas.2006.09.003.
Doghri I., Adam L., Bilger N. Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int J Plast 2010, 26(2):219-238. ISSN 0749-6419. 10.1016/j.ijplas.2009.06.003.
Mercier S., Molinari A. Homogenization of elastic-viscoplastic heterogeneous materials: self-consistent and Mori-Tanaka schemes. Int J Plast 2009, 25(6):1024-1048. ISSN 0749-6419. 10.1016/j.ijplas.2008.08.006.
Wu L., Noels L., Adam L., Doghri I. A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. Int J Plast 2013, 51:80-102. 10.1016/j.ijplas.2013.06.006.
Wu L., Noels L., Adam L., Doghri I. A multiscale mean-field homogenization method for fiber-reinforced composites with gradient-enhanced damage models. Comput Methods Appl Mech Eng 2012, 233-236:164-179. 10.1016/j.cma.2012.04.011.
Wu L., Noels L., Adam L., Doghri I. An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int J Solids Struct 2013, 50(24):3843-3860. ISSN 0020-7683. 10.1016/j.ijsolstr.2013.07.022.
Peerlings R., de Borst R., Brekelmans W., Ayyapureddi S. Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 1996, 39:3391-3403.
Geers M. Experimental analysis and computational modelling of damage and fracture [Ph.D. thesis], Eindhoven (Netherlands): University of Technology; 1997.
Peerlings R., de Borst R., Brekelmans W., Geers M. Gradient-enhanced damage modelling of concrete fracture. Mech Cohesive-Frictional Mat 1998, 3:323-342.
Peerlings R., Geers M., de Borst R., Brekelmans W. A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 2001, 38:7723-7746.
Camanho P.P., Dãvila C.G., de Moura M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 2003, 37(16):1415-1438. 10.1177/0021998303034505.
Harper P.W., Hallett S.R. Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 2008, 75(16):4774-4792. ISSN 0013-7944. 10.1016/j.engfracmech.2008.06.004.
Jiang W.-G., Hallett S.R., Green B.G., Wisnom M.R. A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 2007, 69(9):1982-1995. ISSN 1097-0207. 10.1002/nme.1842.
Pinho S., Iannucci L., Robinson P. Formulation and implementation of decohesion elements in an explicit finite element code. Composites Part A 2006, 37(5):778-789. 10.1016/j.compositesa.2005.06.007.
Turon A., Camanho P., Costa J., Dãvila C. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 2006, 38(11):1072-1089. ISSN 0167-6636. 10.1016/j.mechmat.2005.10.003.
Turon A., Dãvila C., Camanho P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 2007, 74(10):1665-1682. ISSN 0013-7944. 10.1016/j.engfracmech.2006.08.025.
Camacho G.T., Ortiz M. Computational modelling of impact damage in brittle materials. Int J Solids Struct 1996, 33(20-22):2899-2938. ISSN 0020-7683. 10.1016/0020-7683(95)00255-3.
Pandolfi A., Guduru P., Ortiz M., Rosakis A. Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. Int J Solids Struct 2000, 37(27):3733-3760. ISSN 0020-7683. 10.1016/S0020-7683(99)00155-9.
Mergheim J., Kuhl E., Steinmann P. A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Commun Numer Methods Eng 2004, 20(7):511-519.
Radovitzky R., Seagraves A., Tupek M., Noels L. A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 2011, 200:326-344. ISSN 0045-7825. 10.1016/j.cma.2010.08.014.
Prechtel M., Leugering G., Steinmann P., Stingl M. Towards optimization of crack resistance of composite materials by adjustment of fiber shapes. Eng Fract Mech 2011, 78(6):944-960. ISSN 0013-7944. 10.1016/j.engfracmech.2011.01.007.
Wu L., Tjahjanto D., Becker G., Makradi A., Jérusalem A., Noels L. A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng Fract Mech 2013, 104:162-183. ISSN 0013-7944. 10.1016/j.engfracmech.2013.03.018.
Becker G., Noels L. A full discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications. Int J Numer Methods Eng 2013, 93:80-117. ISSN 1097-0207. 10.1002/nme.4381.
Charles Y. A finite element formulation to model extrinsic interfacial behavior. Finite Elem Anal Des 2014, 88(0):55-66. ISSN 0168-874X. 10.1016/j.finel.2014.05.008.
Nguyen V.P. An open source program to generate zero-thickness cohesive interface elements. Adv Eng Softw 2014, 74(0):27-39. ISSN 0965-9978. 10.1016/j.advengsoft.2014.04.002.
Nguyen V.P. Discontinuous Galerkin/extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics. Eng Fract Mech 2014, 128:37-68. ISSN 0013-7944. 10.1016/j.engfracmech.2014.07.003.
Geers M., de Borst R., Brekelmans W., Peerlings R. Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene. Int J Solids Struct 1999, 36(17):2557-2583. ISSN 0020-7683.
Wu L., Noels L., Adam L., Doghri I. Non-local damage-enhanced MFH for multiscale simulations of composites. Composite Materials and Joining Technologies for Composites 2013, vol. 7. Springer, doi:10.1007/978-1-4614-4553-1_13, chap. 13.
van der Meer F., Sluys L. Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater 2009, 43(20):2131-2156. 10.1177/0021998309343054.
Abisset E., Daghia F., Ladevèze P. On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Composites Part A 2011, 42(10):1515-1524. ISSN 1359-835X. 10.1016/j.compositesa.2011.07.004.
van der Meer F.P., Sluys L.J., Hallett S.R., Wisnom M.R. Computational modeling of complex failure mechanisms in laminates. J Compos Mater 2012, 46(5):603-623. 10.1177/0021998311410473.
Chen B., Tay T., Baiz P., Pinho S. Numerical analysis of size effects on open-hole tensile composite laminates. Composites Part A 2013, 47(0):52-62. ISSN 1359-835X. 10.1016/j.compositesa.2012.12.001.
Bažant Z.P., Oh B. Crack band theory for fracture of concrete. Matériaux et Construction****1983, 16:155-177. ISSN 0025-5432. 10.1007/BF02486267.
De Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 1991, 8(4):317-332. ISSN 0264-4401.
Bažant Z.P., Belytchko T.B., Chang T.P. Continuum theory for strain-softening. J Eng Mech ASCE 1984, 110(12):1666-1692. 10.1061/(ASCE)0733-9399(1984)110:12(1666).
Zbib H.M., Aifantis E.C. A gradient-dependent flow theory of plasticity: application to metal and soil instabilities. Appl Mech Rev 1989, 42(11S):S295-S304. 10.1115/1.3152403.
Lorentz E., Andrieux S. A variational formulation for nonlocal damage models. Int J Plast 1999, 15(2):119-138. ISSN 0749-6419. 10.1016/S0749-6419(98)00057-6.
Aifantis E. On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 1992, 30(10):1279-1299. ISSN 0020-7225. 10.1016/0020-7225(92)90141-3.
Svedberg T., Runesson K. A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage. Int J Plast 1997, 13(6-7):669-696. ISSN 0749-6419. 10.1016/S0749-6419(97)00033-8.
Peerlings R., Massart T., Geers M. A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput Methods Appl Mech Eng 2004, 193(30):3403-3417. ISSN 0045-7825. 10.1016/j.cma.2003.10.021.
Noels L., Radovitzky R. A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Methods Eng 2006, 68(1):64-97. 10.1002/nme.1699.
Wu L., Becker G., Noels L. Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework. Comput Methods Appl Mech Eng 2014, 279:379-409. ISSN 0045-7825. 10.1016/j.cma.2014.06.031.
Hulbert G.M., Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 1996, 137(2):175-188. ISSN 0045-7825. 10.1016/S0045-7825(96)01036-5.
Mediavilla J., Peerlings R., Geers M. An integrated continuous-discontinuous approach towards damage engineering in sheet metal forming processes. Eng Fract Mech 2006, 73(7):895-916.
Geuzaine C., Remacle J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 2009, 79(11):1309-1331. 10.1002/nme.2579.
Lemaitre J. Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 1985, 51(1-3):31-49. ISSN 0045-7825. 10.1016/0045-7825(85)90026-X.
Lemaitre J, Chaboche JL. Mécanique des Matériaux solides, Dunod, ISBN 2040157867, 1991.
Doghri I. Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. Int J Numer Methods Eng 1995, 38(20):3403-3431. ISSN 1097-0207. 10.1002/nme.1620382004.
Byström J. Optimal design of a long and slender compressive strut. Int J Multiphys 2009, 3:235-257. 10.1260/175095409788922275.
Geers M.G.D., de Borst R., Brekelmans W.A.M., Peerlings R.H.J. Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 1998, 160:133-153.
Noels L., Radovitzky R. An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Int J Numer Methods Eng 2008, 74(9):1393-1420. ISSN 1097-0207. 10.1002/nme.2213.