Marek's disease virus; serine protease; R and M sites
Abstract :
[en] Herpesviruses encode a unique serine protease essential for viral capsid maturation. This protease undergoes autoprocessing at two sites, R and M, at the consensus sequence (V, L,I)P3-XP2-AP1/SP1' (where X is a polar amino acid). We observed complete autoprocessing at the R and M sites of Marek’s disease virus (MDV) protease following production of the polyprotein in Escherichia coli. Site-directed mutagenesis confirmed the predicted sequence of the R and M sites, with the M site sequence being nonconsensual: MP3-NP2-AP1/SP1'. Mutagenesis and expression kinetics studies suggested that the atypical MDV M site was cleaved exclusively by the processed short protease, a feature making MDV unique among herpesviruses.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Laurent, Sylvie; Institut Scientifique de Recherche Agronomique - INRA > sante animale > Equipe Telomerase et Lymphome Viro-induit, UPR INRA 1282 IASP-213, Nouzilly
Aponte, C., N. M. Mattion, M. K. Estes, A. Charpilienne, and J. Cohen. 1993. Expression of two bovine rotavirus non-structural proteins (NSP2, NSP3) in the baculovirus system and production of monoclonal antibodies directed against the expressed proteins. Arch. Virol. 133:85-95.
Buisson, M., J. F. Hernandez, D. Lascoux, G. Schoehn, E. Forest, G. Arlaud, J. M. Seigneurin, R. W. Ruigrok, and W. P. Burmeister. 2002. The crystal structure of the Epstein-Barr virus protease shows rearrangement of the processed C terminus. J. Mol. Biol. 324:89-103.
Deckman, I. C., M. Hagen, and P. J. McCann III. 1992. Herpes simplex virus type 1 protease expressed in Escherichia coli exhibits autoprocessing and specific cleavage of the 1CP35 assembly protein. J. Virol. 66:7362-7367.
Donaghy, G., and R. Jupp. 1995. Characterization of the Epstein-Barr virus proteinase and comparison with the human cytomegalovirus proteinase. J. Virol. 69:1265-1270.
Godefroy, S., and C. Guenet. 1995. Autoprocessing of HSV-1 protease: effect of deletions on autoproteolysis. FEBS Lett. 357:168-172.
Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51-59.
Jones, T. R., L. Sun, G. A. Bebernitz, V. P. Muzithras, H. J. Kim, S. H. Johnston, and E. Z. Baum. 1994. Proteolytic activity of human cytomegalovirus UL80 protease cleavage site mutants. J. Virol. 68:3742-3752.
Kut, E., and D. Rasschaert. 2004. Assembly of the Marek's disease virus (MDV) capsids using recombinant baculoviruses expressing MDV capsid proteins. J. Gen. Virol. 85:769-774.
McCann, P. J., III, D. R. O'Boyle II, and I. C. Deckman. 1994. Investigation of the specificity of the herpes simplex virus type 1 protease by point mutagenesis of the autoproteolysis sites. J. Virol. 68:526-529.
O'Boyle, D. R., II, K. A. Pokornowski, P. J. McCann III, and S. P. Weinheimer. 1997. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display. Virology 236:338-347.
Osterrieder, N., J. P. Kamil, D. Schumacher, B. K. Tischer, and S. Trapp. 2006. Marek's disease virus: from miasma to model. Nat. Rev. Microbiol. 4:283-294.
Qiu, X., C. A. Janson, J. S. Culp, S. B. Richardson, C. Debouck, W. W. Smith, and S. S. Abdel-Meguid. 1997. Crystal structure of varicella-zoster virus protease. Proc. Natl. Acad. Sci. USA 94:2874-2879.
Sardana, V. V., J. A. Wolfgang, C. A. Veloski, W. J. Long, K. LeGrow, B. Wolanski, E. A. Emini, and R. L. LaFemina. 1994. Peptide substrate cleavage specificity of the human cytomegalovirus protease. J. Biol. Chem. 269: 14337-14340.
Sheaffer, A. K., W. W. Newcomb, J. C. Brown, M. Gao, S. K. Weller, and D. J. Tenney. 2000. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J. Virol. 74:6838-6848.
Thouvenin, E., S. Laurent, M. F. Madelaine, D. Rasschaert, J. F. Vautherot, and E. A. Hewat. 1997. Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. J. Mol. Biol. 270:238-246.
Tigue, N. J., and J. Kay. 1998. Active site mutants of human herpesvirus-6 proteinase. FEBS Lett. 441:467-469.
Tigue, N. J., and J. Kay. 1998. Autoprocessing and peptide substrates for human herpesvirus 6 proteinase. J. Biol. Chem. 273:26441-26446.
Waxman, L., and P. L. Darke. 2000. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother. 11:1-22.
Welch, A. R., L. M. McNally, M. R. Hall, and W. Gibson. 1993. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J. Virol. 67:7360-7372.
Wittwer, A. J., C. L. Funckes-Shippy, and P. J. Hippenmeyer. 2002. Recombinant full-length human cytomegalovirus protease has lower activity than recombinant processed protease domain in purified enzyme and cell-based assays. Antivir. Res. 55:291-306.
Yu, X., P. Trang, S. Shah, I. Atanasov, Y. H. Kim, Y. Bai, Z. H. Zhou, and F. Liu. 2005. Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 102:7103-7108.