Foucault M.L. Physical demonstration of the rotation of the Earth by means of the pendulum, Comptes Rendus de l'Académie des Sciences de Paris. J. Franklin Inst. (1851) 350-353
Anonymous, On Foucault's pendulum experiments, J. Franklin Inst. (1851).
Lancaster E.R. Relative motion of two particles in elliptic orbits. AIAA J. 8 10 (1970) 1878-1879
Bereen T., and Svedt G. Relative motion of particles in coplanar elliptic orbits. J. Guidance Control 2 (1979) 443-446
Humi M. Fuel-optimal rendezvous in a general central force field. J. Guidance, Control Dyn. 16 1 (1993) 215-217
Clohessy W.H., and Wiltshire R.S. Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27 9 (1960) 653-658
Lawden D.F. Optimal Trajectories for Space Navigation (1963), Butterworth, London
Tschauner J., and Hempel P. Optimale Beschleunigeungsprogramme für das Rendezvous-Manover. Acta Astronautica 10 (1964) 296-307
J. Tschauner, The elliptic orbit rendezvous, AIAA 4th Aerospace Sciences Meeting, June 27-29, Los Angeles, CA, 1966.
Gómez G., and Marcote M. High-order analytical solutions on Hill's equations. Celestial Mech. Dyn. Astronomy 94 2 (2006) 197-211
Carter T.E. New form for the optimal rendezvous equations near Keplerian orbit. J. Guidance Control Dyn. 13 1 (1990) 183-186
P. Sengupta, Dynamics and control of satellite relative motion in a central gravitational field, Ph.D. Thesis, Texas A&M University, 2006.
Carter T.E. State transition matrices for terminal rendezvous studies: brief survey and new example. J. Guidance Control Dyn. 21 1 (1998) 148-155
D.W. Gim, K.T. Alfriend, The state transition matrix of relative motion for the perturbed non-circular reference orbit, AAS/AAIA Space Flight Mechanics Meeting, San-Antonio, USA, 2002.
S.K. Balaji, A. Tatnall, Precise Modeling of Relative Motion for Formation Flying Spacecraft, 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, September 29-October 3, 2003.
Gurfil P., and Kasdin N.J. Nonlinear modeling of spacecraft relative motion in the configuration space. J. Guidance Control Dyn. 27 1 (2004) 154-157
Baoyin H., Junfeng L., and Yunfeng G. Dynamical behaviors and relative trajectories of the spacecraft formation flying. Aerosp. Sci. Technol. 6 (2002) 295-301
Lee D., Cochran J.E., and Jo J.H. Solutions to the variational equations for relative motion of satellites. J. Guidance Control Dyn. 30 3 (2007) 669-678
Jiang F., Li J., and Baoyin Y. Approximate analysis for relative motion of satellite formation flying in elliptical orbits. Celestial Mech. Dyn. Astron. 98 1 (2007) 31-66
Gurfil P., and Kholshevnikov K.V. Distances on the relative spacecraft motion manifold. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco (2005)
Condurache D., and Martinusi V. Kepler's problem in rotating reference frames Part I: prime integrals. Vectorial regularization. AIAA J. Guidance Control Dyn. 30 1 (2007) 192-200
Condurache D., and Martinusi V. Kepler's problem in rotating reference frames Part II: relative orbital motion. AIAA J. Guidance Control Dyn. 30 1 (2007) 201-213
Condurache D., and Martinusi V. A novel hypercomplex solution to Kepler's problem. PADEU, Astronomical Department of the Eötvös University vol. 19 (2007) 65-80
Condurache D., and Martinuşi V. A Closed Form Vectorial Solution to the Relative Orbital Motion. PADEU, Astronomical Department of the Eötvös University vol. 19 (2007) 49-64
Condurache D., and Martinusi V. Relative spacecraft motion in a central force field. AIAA J. Guidance Control Dyn. 30 3 (2007) 873-876
D. Condurache, V. Martinusi, Exact solution to the relative orbital motion in eccentric orbits, in: International Conference Analytical Methods of Celestial Mechanics, Sankt-Petersburg, Russia, July 8-12, 2007.
Condurache D., and Martinusi V. A complete closed form vectorial solution to the Kepler problem. Meccanica 42 5 (2007) 465-476
P. Appell, Traité de mécanique rationelle, 5 volumes, Gauthier-Villars, Paris, 1926.
V.I., Arnold, Mathematical Methods of Classical Mechanics, Springer, New York (Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein), 1989.
T. Levi-Civita, U. Amaldi, Lezioni di mecanica razionale, N. Zanichelli (Ed.), 1922-1926.
L. Landau, E. Lifschitz, Mécanique, Mir, Moscou, 1981.
Goldstein H., Poole C.P., and Safko J.L. Classical Mechanics. third ed. (2002), Addison-Wesley, Reading, MA
Lebedev L.P., and Cloud M.J. Tensor Analysis (2003), World Scientific Publishing, Singapore
Geradin M., and Cardona A. Flexible Multibody Dynamics-A Finite Element Approach (2001), Wiley, New York
Simmonds J.G. A Brief on Tensor Analysis. second ed. (1994), Springer, Berlin
Inalhan G., and How J.P. Relative dynamics & control of spacecraft formations in eccentric orbits. AIAA Guidance, Navigation, and Control Conference and Exhibit (2000), Denver, CO
Inalhan G., Tillerson M., and How P. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits. J. Guidance Control Dyn. 25 1 (2002)
Zhang H., and Sun L. Spacecraft Formation Flying in Eccentric Orbits. AIAA Guidance Navigation and Control Conference and Exhibit. Austin, TX (2003)
L.S. Breger, Model Predictive Control for Formation Flying Spacecraft, submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics, MIT, 2004.
P. Sengupta, Satellite Relative Motion Propagation and Control in the Presence of J2 Perturbations, Master Thesis, Texas A&M University, 2003.
Darboux G. Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal, Tome 1 (1887), Gautiers-Villars, Paris (Chapter 2)
Lurie A.I. Analytical Mechanics (2002), Springer, Berlin
Fasano A., and Marmi S. Analytical Mechanics (2006), Oxford University Press, Oxford
Marsden J.E., and Ratiu T.S. Introduction to Mechanics and Symmetry (1994), Springer, Berlin
Angeles J. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms (2006), Springer, Berlin
Angeles J. Rational Kinematics (1989), Springer, Berlin
F.R. Gantmacher, The Theory of Matrices, New York, Chelsea, 1959.
Comberousse R.E. Traité de géométrie (deuxième partie) (1922), Gauthier-Villars, Paris
D. Condurache, New symbolic methods into the study of dynamic systems, Ph.D. Thesis, Technical University "Gh Asachi" Iaşi, 1995 (in Romanian).
D. Condurache, Symbolic Representations. Application in Signal Theory and Dynamical Systems Study, Nord-Est, 1996 (in Romanian).
Condurache D., and Matcovschi M.H. An Exact Solution to Foucault's Pendulum Problem. Bul. Inst. Polit. Iasi, vol. XLI (XLVII) (Fasc. 3-4, section Mathematics, Theoretical Mechanics, Physics) (1997) 83-92
Condurache D., and Matcovschi M.H. A General Method to Obtain an Exact Vectorial Solution to Foucault's Pendulum Problem. Bul. Inst. Polit. Iasi, vol. XLVI(L) (Fasc 1-2, section Mathematics, Theoretical Mechanics, Physics) (2000) 79-96
Battin R.H. An Introduction to the Mathematics and Methods of Astrodynamics (1999), AIAA, New York
Madonna R.G. Orbital Mechanics (1997), Krieger Publishing Company, Malabar, FL
Roy A.E. Orbital Motion (2005), Institute of Physics Publishing, Bristol, Philadelphia
Hill G.W. Researches in lunar theory. Am. J. Math. 1 (1878) 5-26