Item response theory; ability estimation; asymptotic standard error; maximum likelihood; weighted likelihood; Bayesian estimation; robust estimation
Abstract :
[en] This paper focuses on the computation of asymptotic standard errors (ASE) of ability estimators with dichotomous item response models. A general framework is considered and ability estimators are defined from a very restricted set of assumptions and formulas. This approach encompasses most standard methods such as maximum likelihood, weighted likelihood, maximum a posteriori and robust estimators. A general formula for the ASE is derived from the theory of M-estimation. Well-known results are found back as particular cases for the maximum and robust estimators, while new ASE proposals for the weighted likelihood and maximum a posteriori estimators are presented. These new formulas are compared to traditional ones by means of a simulation study under Rasch modeling.
Disciplines :
Education & instruction
Author, co-author :
Magis, David ; Université de Liège - ULiège > Département Education et formation > Psychométrie et édumétrie
Language :
English
Title :
Efficient standard error formulas of ability estimators with dichotomous item response models
Publication date :
2016
Journal title :
Psychometrika
ISSN :
0033-3123
eISSN :
1860-0980
Publisher :
Psychonomic Society, Research Triangle Park, United States - Virginia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques. New York: Marcel Dekker.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (chapters) (pp. 17–20). Reading, MA: Addison-Wesley.
Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal of Mathematical Psychology, 6, 258–276.
Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a micro computer environment. Applied Psychological Measurement, 6, 431–444.
Carroll, R. J., & Pederson, S. (1993). On robustness in the logistic regression model. Journal of the Royal Statistical Society: Series B, 55, 693–706.
Doebler, A. (2012). The problem of bias in person parameter estimation in adaptive testing. Applied Psychological Measurement, 36, 255–270. doi:10.1177/0146621612443304.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New York: Erlbaum.
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston, MA: Kluwer.
Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101. doi:10.1214/aoms/1177703732.
Huber, P.J. (1967). The behavior of maximum likelihood estimates under non-standard conditions. In Proceeding of the 5th Berkeley Symposium, (vol. 1, pp. 221–233).
Huber, P. J. (1981). Robust statistics. New York: Wiley.
Koralov, L., & Sinai, Y. G. (2007). Theory of probability and random processes. New York: Springer.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lord, F. M. (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika, 48, 233–245. doi:10.1007/BF02294018.
Lord, F. M. (1986). Maximum likelihood and Bayesian parameter estimation in item response theory. Journal of Educational Measurement, 23, 157–162. doi:10.1111/j.1745-3984.1986.tb00241.x.
Magis, D. (2014a). On the asymptotic standard error of a class of robust estimators of ability in dichotomous item response models. British Journal of Mathematical and Statistical Psychology, 67, 430–450. doi:10.1111/bmsp.12027.
Magis, D. (2014b). Accuracy of asymptotic standard errors of the maximum and weighted likelihood estimators of proficiency levels with short tests. Applied Psychological Measurement, 38, 105–121. doi:10.1177/0146621613496890.
Magis, D., & Raîche, G. (2012). Random generation of response patterns under computerized adaptive testing with the R package catR. Journal of Statistical Software, 48, 1–31.
Mislevy, R. J. (1986). Bayes modal estimation in item response theory. Psychometrika, 51, 177–195. doi:10.1007/BF02293979.
Mislevy, R. J., & Bock, R. D. (1982). Biweight estimates of latent ability. Educational and Psychological Measurement, 42, 725–737. doi:10.1177/001316448204200302.
Mosteller, F., & Tukey, J. (1977). Exploratory data analysis and regression. Reading, MA: Addison-Wesley.
Nydick, S.W. (2013). catIrt: An R package for simulating IRT-based computerized adaptive tests. R package version 0.4-1.
Ogasawara, H. (2013a). Asymptotic properties of the Bayes and pseudo Bayes estimators of ability in item response theory. Journal of Multivariate Analysis, 114, 359–377. doi:10.1016/j.jmva.2012.08.013.
Ogasawara, H. (2013b). Asymptotic cumulants of the ability estimators using fallible item parameters. Journal of Multivariate Analysis, 119, 144–162. doi:10.1016/j.jmva.2013.04.008.
Partchev, I. (2012). irtoys: Simple interface to the estimation and plotting of IRT models. R package version 0.1.6.
Patton, J. M., Cheng, Y., Yuan, K.-H., & Diao, Q. (2013). The influence of item calibration error on variable-length computerized adaptive testing. Applied Psychological Measurement, 37, 24–40. doi:10.1177/0146621612461727.
R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rao, M. M. (1984). Probability theory with applications. New York: Academic Press.
Reif, M. (2014). PP: Estimation of person parameters for the 1, 2, 3, 4-PL model and the GPCM. R package version 0.5.3.
Schuster, C., & Yuan, K.-H. (2011). Robust estimation of latent ability in item response models. Journal of Educational and Behavioral Statistics, 36, 720–735. doi:10.3102/1076998610396890.
Sijisma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.
Stefanski, L. A., & Boos, D. D. (2002). The calculus of M-estimation. The American Statistician, 56, 29–38. doi:10.1198/000313002753631330.
Wainer, H. (2000). Computerized adaptive testing: A primer (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
Wainer, H., & Wright, B. D. (1980). Robust estimation of ability in the Rasch model. Psychometrika, 45, 373–391. doi:10.1007/BF02293910.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response models. Psychometrika, 54, 427–450. doi:10.1007/BF02294627.
Warm, T. A. (2007). Warm (Maximum) likelihood estimates of Rasch measures. Rasch Measurement Transactions, 21, 1094.
Wu, M. L., Adams, R. J., & Wilson, M. R. (1997). ConQuest: Multi-aspect test software [Computer program]. Camberwell, Australia: Australian Council for Educational Research.
Yuan, K.-H., & Jennrich, R. I. (1998). Asymptotics of estimating equations under natural conditions. Journal of Multivariate Analysis, 65, 245–260. doi:10.1006/jmva.1997.1731.
Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9), 1–16.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.