Abstract :
[en] SiO2 xerogels and Pd/SiO2 cogelled xerogel catalysts have been prepared in a mixture of tetrahydrofurane (THF) and ethanol containing tetraethoxysilane (TEOS), and an aqueous ammonia solution of 0.18 mol/l, from synthesized new silylated acetylacetonate ligands, respectively, 3-[3-(trimethoxysilyl)propyl]-2,4-pentanedione (MS-acac-H), 2,2,6,6-tetramethyl-4-[3-(trimethoxysilyl)propyl]-3,5-heptanedione (MS-dPvM), and 1,3-diphenyl-2-[3-(trimethoxysilyl)propyl]-1,3-propanedione (MS-dBzM), able to form a chelate with a metal ion such as Pd2+. All samples form homogeneous colored gels. The resulting catalysts are composed of palladium crystallites with a diameter of about 3.5 nm, located inside primary silica particles exhibiting a monodisperse microporous distribution as well as large palladium particles from 20 to 50 nm, situated outside the silica aggregates. The silylated organic ligand has a strong influence on the textural properties of xerogels and catalysts, both before and after calcination and reduction steps. Changing the nature of the silylated ligand permits tailoring textural properties such as pore volume, pore size and surface area. Although small palladium crystallites are located inside the silica particles, their complete accessibility, via the micropore network, has been shown. 1,2-Dichloroethane hydrodechlorination over Pd/SiO2 catalysts mainly produces ethane and the reaction rate increases linearly with palladium dispersion. Hydrodechlorination over Pd/SiO2 cogelled xerogel catalysts is a structure insensitive reaction compared to the ensemble size concept. (C) 2004 Elsevier B.V. All rights reserved.
Scopus citations®
without self-citations
2