[en] At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat’s morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads
Disciplines :
Zoology Aerospace & aeronautics engineering
Author, co-author :
Vanderelst, Dieter; Universiteit Antwerpen - UA > Department of Engineering Management > Active Perception Lab
Peremans, Herbert; Universiteit Antwerpen - UA > Department of Engineering Management > Active Perception Lab
Abdul Razak, Norizham; Université de Liège - ULiège > Aerospace and Mechanical Engineering Department > Fluid Structure Interaction and Experimental Aerodynamics
Verstraelen, Edouard ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Dimitriadis, Grigorios ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Language :
English
Title :
The aerodynamic cost of head morphology in bats: maybe not as bad as it seems
Publication date :
2015
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Nowak RM (1994) Walker's bats of the world. JHU Press.
Geipel I, Jung K, Kalko EK (2013). Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.
Vanderelst D, De Mey F, Peremans H, Geipel I, Kalko E, et al. (2010) What noseleaves do for fm bats depends on their degree of sensorial specialization. PLoS One 5:e11893. doi: 10.1371/journal.pone. 0011893 PMID: 20808438
Vanderelst D, Reijniers J, Steckel J, Peremans H (2011) Information generated by the moving pinnae of Rhinolophus rouxi: tuning of the morphology at different harmonics. Plos One 6:e20627. doi: 10. 1371/journal.pone.0020627 PMID: 21698094
Vanderelst D, Reijniers J, Firzlaff U, Peremans H (2011) Dominant glint based prey localization in horseshoe bats: a possible strategy for noise rejection. PLoS computational biology 7:e1002268. doi: 10.1371/journal.pcbi.1002268 PMID: 22144876
Chiu C, Moss CF (2007). The Role Of The External Ear In Vertical Sound Localization In The Free Flying Bat, Eptesicus fuscus.
Mogdans J, Ostwald J, Schnitzler HU (1988). The role of pinna movement for the localization of vertical and horizontal wire obstacles in the Greater Horseshoe Bat, Rhinolopus ferrumequinum.
Hartley DJ, Suthers RA (1987) The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. J Acoust Soc Am 82:1892-1900. doi: 10.1121/1.395684 PMID: 3429728
Vanderelst D, Jonas R, Herbert P (2012) The furrows of Rhinolophidae revisited. Journal of the Royal Society, Interface/the Royal Society 9:1100-1103. doi: 10.1098/rsif.2011.0812 PMID: 22279156
Vanderelst D, Lee YF, Geipel I, Kalko EK, Kuo YM, et al. (2013) The noseleaf of rhinolophus formosae focuses the frequency modulated (fm) component of the calls. Frontiers in physiology 4: Epub 2013 Jul. 19 doi: 10.3389/fphys.2013.00191 PMID: 23882226
Fenton MB (1972) The structure of aerial-feeding bat faunas as indicated by ears and wing elements. Canadian Journal of Zoology 50:287-296. doi: 10.1139/z72-039
Norberg UM, Rayner JM (1987) Ecological morphology and flight in bats (mammalia; chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 316:335-427. doi: 10.1098/rstb.1987.0030
Vaughan T (1959) Functional morphology of three bats: Eumops, Myotis, Macrotus. University of Kansas.
Muijres FT, Johansson LC, Bowlin MS, Winter Y, Hedenstrm A (2012) Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. PLOS One 7:e37335. doi: 10. 1371/journal.pone.0037335 PMID: 22624018
Gardiner JD, Codd JR, Nudds RL (2011) An association between ear and tail morphologies of bats and their foraging style. Canadian Journal of Zoology 89:90-99. doi: 10.1139/Z10-096
Bullen RD, McKenzie NL (2001) Bat airframe design: flight performance, stability and control in relation to foraging ecology. Australian Journal of Zoology 49:235-261. doi: 10.1071/ZO00037
Gardiner J, Dimitriadis G, Sellers W, Codd J (2009) The aerodynamics of big ears in the brown long eared bat plecotus auritus. Acta Chiropterologica 10:313-321. doi: 10.3161/150811008X414881
Norberg UM (1990) Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer-Verlag.
Tennekes H (2009) The Simple Science of Flight, Revised and Expanded Edition: From Insects to Jumbo Jets. MIT press.
Anderson DF, Eberhardt S (2009) Understanding flight. McGraw-Hill Professional.
Weinbeer M, Kalko EKV (2007) Ecological Niche And Phylogeny The Highly Complex Echolocation Behavior Of The Trawling Long Legged Bat Macrophyllum Macrophyllum. Behavioral Ecology and Sociobiology 61:1337-1348. doi: 10.1007/s00265-007-0364-8
Siemers BM, Stilz P, Schnitzler HU (2001) The acoustic advantage of hunting at low heights above water: behavioural experiments on the European trawling bats Myotis capaccinii, M. dasycneme and M. daubentonii. Journal of Experimental Biology 204:3843-54. PMID: 11807102
Kwiecinski GG (2006) Phyllostomus Discolor. Mammalian Species 801:1-11. doi: 10.1644/801.1
Giannini NP, Kalko EK (2004) Trophic structure in a large assemblage of phyllostomid bats in panama. Oikos 105:209-220. doi: 10.1111/j.0030-1299.2004.12690.x
Firzlaff U, Schuller G (2003) Spectral directionality of the external ear of the lesser spear-nosed bat, phyllostomus discolor. Hearing research 181:27-39. doi: 10.1016/S0378-5955 (03) 00164-3 PMID: 12855360
De Mey F, Reijniers J, Peremans H, Otani M, Firzlaff U (2008) Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor. Journal of the Acoustical Society of America 124:2123-32. doi: 10.1121/1.2968703 PMID: 19062853
Schnitzler HU, Hackbarth H, Heilmann U, Herbert H (1985) Echolocation behavior of rufous horseshoe bats hunting for insects in the flycatcher-style. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 157:39-46. doi: 10.1007/BF00611093
Schnitzler HU, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197:541-559. doi: 10.1007/s00359-010-0569-6 PMID: 20857119
Firzlaff U, Schuller G (2004) Directionality of hearing in two cf/fm bats, pteronotus parnellii and rhinolophus rouxi. Hearing research 197:74-86. doi: 10.1016/j.heares.2004.06.009 PMID: 15504606
Zhuang Q, Muller R (2006) Noseleaf Furrows In A Horseshoe Bat Act As Resonance Cavities Shaping The Biosonar Beam. Phys Rev Lett 97:218701. doi: 10.1103/PhysRevLett.97.218701 PMID: 17155779
Surlykke A, Moss CF (2000) Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. The Journal of the Acoustical Society of America 108:2419-2429. doi: 10.1121/1. 1315295 PMID: 11108382
Wotton JM, Haresign T, Simmons JA (1995) Spatially dependent acoustic cues generated by the external ear of the big brown bat, Eptesicus fuscus. The Journal of the Acoustical Society of America 98:1423-1445. doi: 10.1121/1.413410 PMID: 7560511
Wotton JM, Simmons JA (2000) Spectral cues and perception of the vertical position of targets by the big brown bat, Eptesicus fuscus. The Journal of the Acoustical Society of America 107:1034-41. doi: 10.1121/1.428283 PMID: 10687712
Simmons JA (1969) Acoustic Radiation Patterns for the Echolocating Bats Chilonycteris rubiginosa and Eptesicus fuscus. The Journal of the Acoustical Society of America 46:1054-1056. doi: 10.1121/1.1911804
Wotton JM, Jenison RL, Hartley DJ (1997) The Combination Of Echolocation Emission And Ear Reception Enhances Directional Spectral Cues Of The Big Brown Bat, Eptesicus fuscus. Journal of the Acoustical Society of America 101:1723-1733. doi: 10.1121/1.418271 PMID: 9069638
Vanderelst D, De Mey F, Peremans H (2010) Simulating the morphological feasibility of adaptive beamforming in bats. In: From Animals to Animats 11, Springer. pp. 136-145.
Kurta A, Baker RH (1990) Eptesicus fuscus. Mammalian Species x: 1-10. doi: 10.2307/3504258
Smith P (2008) LONG-LEGGED BAT Macrophyllum macrophyllum. In: Mammals of Paraguay, Fauna Paraguay.
Eger JL, Fenton MB (2003) Rhinolophus paradoxolophus. Mammalian Species 731:1-4. doi: 10. 1644/731
Surlykke A, Ghose K, Moss CF (2009) Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology 212:1011-20. doi: 10.1242/jeb.024620 PMID: 19282498
Jakobsen L, Ratcliffe JM, Surlykke A (2013) Convergent acoustic field of view in echolocating bats. Nature 493:93-96. doi: 10.1038/nature11664 PMID: 23172147
Holderied M (2001) Akustische Flugbahnverfolgung von Fledermäusen: Artvergleich des Verhaltens beim Suchflug und Richtcharakteristik der Schallabstrahlung. Ph. D. thesis, Naturwissenschaftliche Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg.
Kunz TH, Parsons S (1988) Ecological and behavioral methods for the study of bats. Smithsonian Institution Press Washington.
Barlow J, Rae W, Pope A (1999) Low-speed wind tunnel testing. John Wiley & Sons, Canada.
Garcia D (2011) A fast all-in-one method for automated post-processing of piv data. Experiments in fluids 50:1247-1259. doi: 10.1007/s00348-010-0985-y PMID: 24795497
Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis 54:1167-1178. doi: 10.1016/j.csda.2009.09.020
Schnyder H, Vanderelst D, Luksch H, Firzlaff U (2014) The avian head induces cues for sound localization in elevation. Plos One. doi: 10.1371/journal.pone.0112178
Eisenberg JF, Redford KH (2000) Mammals of the Neotropics, Volume 3: Ecuador, Bolivia, Brazil, volume 3. University of Chicago Press.
Obrist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera. Journal of Experimental Biology 180:119-152. PMID: 8371084
Seibert AM, Koblitz JC, Denzinger A, Schnitzler HU (2013) Scanning Behavior in Echolocating Common Pipistrelle Bats (Pipistrellus pipistrellus). PloS one 8:e60752. doi: 10.1371/journal.pone.0060752 PMID: 23580164