[en] This work builds on earlier work by Kleidon and Schymanski (2008) who explored the use of the maximum entropy production (MEP) principle for modeling hydrological systems. They illustrated that MEP can be used to determine the partitioning of soil water into runoff and evaporation—which determines hydroclimatic conditions around the Globe—by optimizing effective soil and canopy conductances in a way to maximize entropy production by these fluxes. In the present study, we show analytically that under their assumption of constant rainfall, the proposed principle always yields an optimum where the two conductances are equal, irrespective of rainfall rate, evaporative demand, or gravitational potential. Subsequently, we show that under periodic forcing or periodic variations in one resistance (e.g., vegetation seasonality), the optimal conductance does depend on climatic drivers such as the length of dry spells or the time of closure of stomata.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Westhoff, Martijn ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Zehe, E.
Language :
English
Title :
Maximum entropy production: can it be used to constrain conceptual hydrological models?
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Andréassian, V., Perrin, C., Parent, E., and Bárdossy, A.: The Court of Miracles of Hydrology: can failure stories contribute to hydrological science?, Hydrolog. Sci. J., 55, 849-856, doi:10.1080/02626667. 2010.506050, 2010.
Brolsma, R. J. and Bierkens, M. F. P.: Groundwater-soil water-vegetation dynamics in a temperate forest ecosystem along a slope, Water Resour. Res., 43, W01414, doi:10.1029/2005WR004696, 2007. (Pubitemid 46364292)
Caylor, K. K., Scanlon, T. M., and Rodriguez-Iturbe, I.: Ecohydrological optimization of pattern and processes in water-limited ecosystems: a trade-off-based hypothesis, Water Resour. Res., 45, W08407, doi:10.1029/ 2008WR007230, 2009.
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resour. Res., 47, W09301, doi:10.1029/2010WR009827, 2011.
Daly, C. and McKee, W.: Meteorological data from benchmark stations at the Andrews Experimental Forest, Long-Term Ecological Research, Forest Science Data Bank, Corvallis, OR, [Database], available at: http://andrewsforest. oregonstate.edu/data/abstract. cfm?dbcode=MS001, last access: 22 November 2011.
Dewar, R. C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger, Entropy, 11, 931-944, doi:10.3390/e11040931, 2009.
Dewar, R. C.: Maximum entropy production and plant optimization theories, Philos. T. Roy. Soc. B, 365, 1429-1435, doi:10.1098/rstb.2009.0293, 2010.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour. Res., 47, W11510, doi:10.1029/2010WR010174, 2011.
Johnson, S. and Rothacher, J.: Stream discharge in gaged watersheds at the Andrews Experimental Forest. Long-Term Ecological Research, Forest Science Data Bank, Corvallis, OR [Database], available at: http://andrewsforest. oregonstate. edu/data/abstract.cfm?dbcode=HF004 (last access: 22 November 2011), 2009.
Klausmeier, C. A.: Regular and irregular patterns in semiarid vegetation, Science, 284, 1826-1828, doi:10.1126/science.284.5421.1826, 1999. (Pubitemid 29291430)
Kleidon, A.: Nonequilibrium thermodynamics and maximum entropy production in the Earth system, Naturwissenschaften, 96, 653-677, doi:10.1007/s00114-009- 0509-x, 2009.
Kleidon, A.: A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production, Philos. T. Roy. Soc. B, 365, 1303-1315, doi:10.1098/rstb.2009.0310, 2010a.
Kleidon, A.: Life, hierarchy, and the thermodynamic machinery of planet Earth, Phys. Life Rev., 7, 424-460, doi:10.1016/j.plrev.2010.10.002, 2010b.
Kleidon, A. and Schymanski, S.: Thermodynamics and optimality of the water budget on land: a review, Geophys. Res. Lett., 35, L20404, doi:10.1029/2008GL035393, 2008.
Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale, Hydrol. Earth Syst. Sci., 17, 225-251, doi:10.5194/hess-17- 225-2013, 2013.
Kondepudi, D.: Introduction to modern thermodynamics, Wiley, 2008.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272-288, doi:10.1016/S0022-1694(97)00041-3, 1997. (Pubitemid 28037764)
Lorenz, R. D., Lunine, J. I.,Withers, P. G., and McKay, C. P.: Titan, Mars and Earth: entropy production by latitudinal heat transport, Geophys. Res. Lett., 28, 415-418, doi:10.1029/2000gl012336, 2001.
McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M., Selker, J., andWeiler, M.: Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology, Water Resour. Res., 43, W07301, doi:10.1029/ 2006WR005467, 2007. (Pubitemid 350194455)
Monteith, J. L.: Evaporation and surface temperature, Q. J. Roy. Meteorol. Soc., 107, 1-27, doi:10.1002/qj.49710745102, 1981.
Moore, R. J.: The probability-distributed principle and runoff production at point and basin scales, Hydrolog. Sci. J., 30, 273-297, doi:10.1080/ 02626668509490989, 1985. (Pubitemid 15526721)
Paik, K. and Kumar, P.: Optimality approaches to describe characteristic fluvial patterns on landscapes, Philos. T. Roy. Soc. B, 365, 1387-1395, doi:10.1098/rstb.2009.0303, 2010.
Paltridge, G.W.: Climate and thermodynamic systems of maximum dissipation, Nature, 279, 630-631, doi:10.1038/279630a0, 1979. (Pubitemid 10254438)
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275-289, doi:10.1016/S0022-1694(03)00225-7, 2003. (Pubitemid 37143319)
Porada, P., Kleidon, A., and Schymanski, S. J.: Entropy production of soil hydrological processes and its maximisation, Earth Syst. Dynam., 2, 179-190, doi:10.5194/esd-2-179-2011, 2011.
Porporato, A., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress, Adv. Water Resour., 24, 725-744, doi:10.1016/S0309- 1708(01)00006-9, 2001. (Pubitemid 32593049)
Prigogine, I.: What is entropy?, Naturwissenschaften, 76, 1-8, doi:10.1007/BF00368303, 1989.
Rodriguez-Iturbe, I., D'Odorico, P., Porporato, A., and Ridolfi, L.: On the spatial and temporal links between vegetation, climate, and soil moisture, Water Resour. Res., 35, 3709-3722, doi:10.1029/1999WR900255, 1999.
Rothacher, J.: Streamflow from small watersheds on the western slope of the Cascade Range of Oregon, Water Resour. Res., 1, 125-134, doi:10.1029/WR001i001p00125, 1965.
Rothacher, J., Dyrness, C. T., and Fredriksen, R. L.: Hydrologic and related characteristics of three small watersheds in the Oregon Cascades, US Department of Agriculture, US Forest Service, Pacific Northwest Research Station, Portland, Oregon, USA, 1967.
Schaefli, B., Harman, C. J., Sivapalan, M., and Schymanski, S. J.: HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling, Hydrol. Earth Syst. Sci., 15, 635- 646, doi:10.5194/hess-15-635-2011, 2011.
Schymanski, S. J., Kleidon, A., and Roderick, M. L.: Ecohydrological optimality, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., vol. 1, John Wiley&Sons Ltd., doi:10.1002/0470848944.hsa319, 2009a.
Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B., and Beringer, J.: An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance, Water Resour. Res., 45, W01412, doi:10.1029/2008WR006841, 2009b.
Schymanski, S. J., Kleidon, A., Stieglitz, M., and Narula, J.: Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems, Philos. T. Roy. Soc. B, 365, 1449-1455, doi:10.1098/rstb.2009.0309, 2010.
Tague, C. L. and Band, L. E.: Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale, Hydrol. Process., 15, 1415-1439, doi:10.1002/hyp.171, 2001. (Pubitemid 32555046)
Thompson, S., Harman, C., Troch, P., Brooks, P., and Sivapalan, M.: Spatial scale dependence of ecohydrologically mediated water balance partitioning: a synthesis framework for catchment ecohydrology, Water Resour. Res., 47, W00J03, doi:10.1029/2010WR009998, 2011.
Zehe, E. and Sivapalan, M.: Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13, 1273-1297, doi:10.5194/hess-13-1273-2009, 2009.
Zehe, E., Lee, H., and Sivapalan, M.: Dynamical process upscaling for deriving catchment scale state variables and constitutive relations for meso-scale process models, Hydrol. Earth Syst. Sci., 10, 981-996, doi:10.5194/hess-10-981-2006, 2006. (Pubitemid 44957888)
Zehe, E., Blume, T., and Blöschl, G.: The principle of maximum energy dissipation: a novel thermodynamic perspective on rapid water flow in connected soil structures, Philos. T. Roy. Soc. B, 365, 1377-1386, doi:10.1098/rstb.2009.0308, 2010.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.