Abrahamse, E. L., Jimenez, L., Verwey, W. B., and Clegg, B. A. (2010). Representing serial action and perception. Psychon. Bull. Rev. 17, 603-623. doi: 10.3758/PBR.17.5.603
Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: evidence for a SNARC-like effect. PLoS One 9:e90373. doi: 10.1371/journal.pone.0090373
Anderson, J. S., Ferguson, M. A., Lopez-Larson, M., andYurgelun-Todd, D. (2010). Topographic maps of multisensory attention. Proc. Natl. Acad. Sci. U S A 107, 20110-20114. doi: 10.1073/pnas.1011616107
Anderson, E. J., Husain, M., and Sumner, P. (2008). Human intraparietal sulcus (IPS) and competition between exogenous and endogenous saccade plans. Neuroimage 40, 838-851. doi: 10.1016/j.neuroimage.2007.10.046
Attout, L., Fias, W., Salmon, E., and Majerus, S. (2014). Common neural substrates for ordinal representation in short-term memory, numerical and alphabetical cognition. PLoS One 9:e92049. doi: 10.1371/journal.pone.0092049
Awh, E., and Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119-126. doi: 10.1016/s1364-6613(00)01593-x
Baddeley, A. (2012). Working memory: theories, models and controversies. Annu. Rev. Psychol. 63, 1-29. doi: 10.1146/annurev-psych-120710-100422
Baddeley, A. D., and Hitch, G. (1974). “Working memory,” in The Psychology of Learning and Motivation (Vol. 8), ed G. H. Bower (New York: Academic Press), 47-89.
Bahcall, D. O., and Kowler, E. (1999). Attentional interference at small spatial separations. Vision Res. 39, 71-86. doi: 10.1016/s0042-6989(98)00090-x
Barrouillet, P., and Camos, V. (2007). “The time-based resource-sharing model of working memory,” in The Cognitive Neuroscience of Working Memory, eds N. Osaka, R. H. Logie and M. D’Esposito (Oxford: Oxford University Press), 59-80.
Barrouillet, P., and Camos, V. (2012). As time goes by temporal constraints in working memory. Curr. Dir. Psychol. Sci. 21, 413-419. doi: 10.1177/0963721412459513
Becker, J. T., MacAndrew, D. K., and Fiez, J. A. (1999). A comment on the functional localization of the phonological storage subsystem of working memory. Brain Cogn. 41, 27-38. doi: 10.1006/brcg.1999.1094
Bonato, M., Zorzi, M., and Umilta, C. (2012). When time is space: evidence for a mental time line. Neurosci. Biobehav. Rev. 36, 2257-2273. doi: 10.1016/j.neubiorev.2012.08.007
Botvinick, M., and Watanabe, T. (2007). From numerosity to ordinal rank: a gain-field model of serial order representation in cortical working memory. J. Neurosci. 27, 8636-8642. doi: 10.1523/jneurosci.2110-07.2007
Brown, G. D., Neath, I., and Chater, N. (2007). A temporal ratio model ofmemory. Psychol. Rev. 114, 539-576. doi: 10.1037/0033-295x.114.3.539
Brown, G. D. A., Preece, T., and Hulme, C. (2000). Oscillator-based memory for serial order. Psychol. Rev. 107, 127-181. doi: 10.1037//0033-295x.107.1.127
Buchsbaum, B., and D’Esposito, M. (2008). The search for the phonological store: from loop to convolution. J. Cogn. Neurosci. 20, 762-778. doi: 10.1162/jocn.2008.20501
Burgess, N., and Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. J. Mem. Lang. 55, 627-652. doi: 10.1016/j.jml.2006.08.005
Buzsaki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827840. doi: 10.1002/hipo.20113
Buzsaki, G., and Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130-138. doi: 10.1038/nn.3304
Caramazza, A. (1996). The role of the graphemic buffer in reading. Cogn. Neuropsy- chol. 13, 673-698. doi: 10.1080/026432996381881
Caramazza, A., and Hillis, A. E. (1990). Where do semantic errors come from? Cortex 26, 95-122. doi: 10.1016/s0010-9452(13)80077-9
Cave, K. R., and Zimmerman, J. M. (1997). Flexibility in spatial attention before and after practice. Psychol. Sci. 8, 399-403. doi: 10.1111/j.1467-9280.1997.tb00433.x
Chun, M. M., Golomb, J. D., and Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annu. Rev. Psychol. 62, 73-101. doi: 10.1146/annurev.psych.093008.100427
Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus- driven attention in the brain. Nat. Rev. Neurosci. 3, 201-215. doi: 10.1038/nrn755
Costello, A. D., and Warrington, E. K. (1987). The dissociation of visuospatial neglect and neglect dyslexia. J. Neurol. Neurosurg. Psychiatry 50, 1110-1116. doi: 10.1136/jnnp.50.9.1110
Cowan, N. (1999). “An embedded-processes model ofworkingmemory,” in Models ofWorking Memory: Mechanisms ofActive Maintenance and Executive Control, eds A. Miyake and P. Shah (New York, NY: Cambridge University Press), 62-101.
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87-114; discussion 114-185. doi: 10.1017/s0140525x01003922
Cowan, N., Li, D., Moffitt, A., Becker, T. M., Martin, E. A., Saults, J. S., et al. (2011). A neural region of abstract working memory. J. Cogn. Neurosci. 23, 2852-2863. doi: 10.1162/jocn.2011.21625
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586-4590. doi: 10.1073/pnas.81.14. 4586
Cubelli, R., Nichelli, P., Bonito, V., De Tanti, A., andInzaghi, M. G. (1991). Different patterns of dissociation in unilateral spatial neglect. Brain Cogn. 15, 139-159. doi: 10.1016/0278-2626(91)90023-2
Davranche, K., Nazarian, B., Vidal, F., and Coull, J. (2011). Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J. Cogn. Neurosci. 23, 3318-3330. doi: 10.1162/jocn_a_00030
Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 122, 371-396. doi: 10.1037/00963445.122.3.371
Della Sala, S., Darling, S., and Logie, R. H. (2010). Items on the left are better remembered. Q. J. Exp. Psychol. (Hove) 63, 848-855. doi: 10.1080/17470211003690672
Delogu, F., Nijboer, T. C., and Postma, A. (2012). Binding “when” and “where” impairs temporal, but not spatial recall in auditory and visual working memory. Front. Psychol. 3:62. doi: 10.3389/fpsyg.2012.00062
Depoorter, A., and Vandierendonck, A. (2009). Evidence for modality-independent order codinginworkingmemory. Q. J. Exp. Psychol. (Hove) 62, 531-549. doi: 10.1080/17470210801995002
Derdikman, D., and Moser, E. I. (2010). A manifold of spatial maps in the brain. Trends Cogn. Sci. 14, 561-569. doi: 10.1016/j.tics.2010.09.004
Doricchi, F., Guariglia, P., Gasparini, M., and Tomaiuolo, F. (2005). Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nat. Neurosci. 8, 1663-1665. doi: 10.1038/nn1563
Doricchi, F., Merola, S., Aiello, M., Guariglia, P., Bruschini, M., Gevers, W., et al. (2009). Spatial orienting biases in the decimal numeral system. Curr. Biol. 19, 682-687. doi: 10.1016/j.cub.2009.02.059
Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychol. Sci. 11,467-473. doi: 10.1111/1467-9280.00290
Drucker, C. B., and Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition 132, 57-67. doi: 10.1016/j.cognition.2014.03.011
Dutta, A., and Nairne, J. S. (1993). The separability of space and time: dimensional interaction in the memory trace. Mem. Cognit. 21, 440-448. doi: 10.3758/bf03197175
Ebbinghaus, H.(1885 [1964]). Memory: A Contribution to Experimental Psychology. New York: Dover.
Ekstrom, A.D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature 425, 184-188. doi: 10.1038/nature01964
Engle, R. W., and Kane, M. J. (2004). “Executive attention, working memory capacity and a two-factor theory of cognitive control,” in The Psychology of Learning and Motivation (Vol. 44), ed B. Ross (NY: Elsevier), 145-199.
Farrell, S., and Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychon. Bull. Rev. 9, 59-79. doi: 10.3758/bf03196257
Fias, W., van Dijck, J.-P., and Gevers, W. (2011). “How is space associated with number? The role of working memory,” in Space, Time and Number in the Brain—Searching for Evolutionary Foundations of Mathematical Thought: Attention and Performance Xxiv, eds S. Dehaene and E. Brannon (Amsterdam: Elsevier Science), 133-148.
Fischer-Baum, S., and Benjamin, A. S. (2014). Time, space and memory for order. Psychon. Bull. Rev. 21, 1263-1271. doi: 10.3758/s13423-014-0604-7
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., and Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Curr. Biol. 22, 814819. doi: 10.1016/j.cub.2012.03.013
Gazzaley, A., and Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16, 129-135. doi: 10.1016/j.tics.2011.11.014
Geng, J. J., and Mangun, G. R. (2009). Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience. J. Cogn. Neurosci. 21, 1584601. doi: 10.1162/jocn.2009.21103
Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., and Fias, W. (2006). Automatic response activation of implicit spatial information: evidence from the SNARC effect. ActaPsychol. (Amst) 122, 221-233. doi: 10.1016/j.actpsy.2005.11.004
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., and Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain 134, 1694-1709. doi: 10.1093/brain/awr085
Ginsburg, V., van Dijck, J. P., Previtali, P., Fias, W., and Gevers, W. (2014). The impact of verbal working memory on number-space associations. J. Exp. Psychol. Learn. Mem. Cogn. 40, 976-986. doi: 10.1037/a0036378
Gmeindl, L., Walsh, M., and Courtney, S. M. (2011). Binding serial order to representations in working memory: a spatial/verbal dissociation. Mem. Cognit. 39, 37-46. doi: 10.3758/s13421-010-0012-9
Hachmann, W. M., Bogaerts, L., Szmalec, A., Woumans, E., Duyck, W., and Job, R. (2014). Short-term memory for order but not for item information is impaired in developmental dyslexia. Ann. Dyslexia 64, 121-136. doi: 10.1007/s11881-013-0089-5
Henson, R. N. A. (1998). Short-term memory for serial order: the start-end model. Cogn. Psychol. 36, 73-137. doi: 10.1006/cogp.1998.0685
Henson, R. N. A., Burgess, N., and Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 38, 426-440. doi: 10.1016/s0028-3932(99)00098-6
Henson, R. N. A., Norris, D. G., Page, M. P. A., and Baddeley, A. D. (1996). Unchained memory: error patterns rule out chaining models of immediate serial recall. Q. J. Exp. Psychol. 49A, 80-115. doi: 10.1080/713755612
Hung, J., Driver, J., and Walsh, V. (2005). Visual selection and posterior parietal cortex: effects of repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen’s theory of visual attention. J. Neurosci. 25, 9602-9612. doi: 10.1523/jneurosci.0879-05.2005
Hurlstone, M. J., Hitch, G. J., and Baddeley, A. D. (2014). Memory for serial order across domains: an overview of the literature and directions for future research. Psychol. Bull. 140, 339-373. doi: 10.1037/a0034221
Jensen, O., and Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 28, 67-72. doi: 10.1016/j.tins.2004.12.001
Jewell, G., and McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38, 93-110. doi: 10.1016/s0028-3932(99)00045-7
Johnson, M. R., Higgins, J. A., Norman, K. A., Sederberg, P. B., Smith, T. A., and Johnson, M. K. (2013). Foraging for thought an inhibition-of-return-like effect resulting from directing attention within working memory. Psychol. Sci. 24, 1104-1112. doi: 10.1177/0956797612466414
Jones, D., Farrand, P., Stuart, G., and Morris, N. (1995). Functional equivalence of verbal and spatial information in serial short-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 21, 1008-1018. doi: 10.1037//0278-7393.21.4.1008
Kahana, M. J. (2012). Foundations of Human Memory. New York, NY: Oxford University Press.
Kahana, M. J., Mollison, M. V., and Addis, K. M. (2010). Positional cues in serial learning: the spin-list technique. Mem. Cognit. 38, 92-101. doi: 10.3758/MC.38. 1.92
Kalm, K., and Norris, D. (2014). The representation of order information in auditory-verbal short-term memory. J. Neurosci. 34, 6879-6886. doi: 10.1523/JNEUROSCI.4104-13.2014
Katz, R. B., and Sevush, S. (1989). Positional dyslexia. Brain Lang. 37, 266-289. doi: 10.1016/0093-934x(89)90019-9
Kirsner, K., and Brown, H. (1981). Laterality and recency effects in working memory. Neuropsychologia 19, 249-261. doi: 10.1016/0028-3932(81)90109-3
Kiyonaga, A., and Egner, T. (2013). Working memory as internal attention: toward an integrative account ofinternal and external selection processes. Psychon. Bull. Rev. 20, 228-242. doi: 10.3758/s13423-012-0359-y
Lashley, K. S. (1951). “The problem of serial order in behavior,” in Cerebral Mechanisms in Behavior. The Hixon Symposium, ed L. A. Jeffress (New York: John Wiley and Sons, Inc.), 112-136.
Lisman, J.E., and Jensen, O. (2013). The 0-y neural code. Neuron 77, 1002-1016. doi: 10.1016/j.neuron.2013.03.007
Ma, W. J., Husain, M., and Bays, P. M. (2014). Changing concepts of working memory. Nat. Neurosci. 17, 347-356. doi: 10.1038/nn.3655
Maass, A., and Russo, A. (2003). Directional bias in the mental representation of spatial events: nature or culture? Psychol. Sci. 14, 296-301. doi: 10.1111/14679280.14421
Macaluso, E., and Driver, J. (2005). Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci. 28, 264-271. doi: 10.1016/j.tins.2005.03.008
Macaluso, E., and Patria, F. (2007). Spatial re-orienting of visual attention along the horizontal or the vertical axis. Exp. Brain Res. 180, 23-34. doi: 10.1007/s00221-006-0841-8
Majerus, S., Attout, L., D’Argembeau, A., Degueldre, C., Fias, W., Maquet, P., et al. (2012). Attention supports verbal short-term memory via competition between dorsal and ventral attention networks. Cereb. Cortex 22, 1086-1097. doi: 10.1093/cercor/bhr174
Majerus, S., Cowan, N., Peters, F., Van Calster, L., Phillips, C., and Schrouff, J. (2014). Cross-modal decoding of neural patterns associated with working memory: evidence for attention-based accounts of working memory. Cereb. Cortex doi: 10.1093/cercor/bhu189. [Epub ahead of print].
Majerus, S., D’Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F., et al. (2010). The commonality of neural networks for verbal and visual short-term memory. J. Cogn. Neurosci. 22, 2570-2593. doi: 10.1162/jocn.2009.21378
Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V., et al. (2006). The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order? Neuroimage 32, 880-891. doi: 10.1016/j.neuroimage.2006.03.048
Marshuetz, C. (2005). Order information in working memory: an integrative review of evidence from brain and behavior. Psychol. Bull. 131, 323-339. doi: 10.1037/0033-2909.131.3.323
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., and Chenevert, T. L. . Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. J. Cogn. Neurosci. 12, 130-144. doi: 10.1162/08989290051137459
Martinez Perez, T., Majerus, S., Mahot, A., and Poncelet, M. (2012). Evidence for a specific impairment of serial order short-term memory in dyslexic children. Dyslexia 18, 94-109. doi: 10.1002/dys.1438
Miles, L. K., Tan, L., Noble, G. D., Lumsden, J., and Macrae, C. N. (2011). Can a mind have two time lines? Exploring space-time mapping in Mandarin and English speakers. Psychon. Bull. Rev. 18, 598-604. doi: 10.3758/s13423-011-0068-y
Molenberghs, P., Gillebert, C., Peeters, R., and Vandenberghe, R. (2008). Convergence between lesion-symptom mapping and fmri of spatially selective attention in the intact brain. J. Neurosci. 28, 3359-3373. doi: 10.1523/JNEUROSCI.5247-07.2008
Molenberghs, P., Mesulam, M., Peeters, R., and Vandenberghe, R. (2007). Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. Cereb. Cortex 17, 2703-2712. doi: 10.1093/cercor/bhl179
Nieder, A., Diester, I., and Tudusciuc, O. (2006). Temporal and spatial enumeration processes in the primate parietal cortex. Science 313, 1431-1435. doi: 10.1126/science.1130308
Nissen, M. J., and Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 19, 1-32. doi: 10.1016/0010-0285(87)90002-8
Nitz, D.A. (2012). Spaces within spaces: rat parietal cortex neurons register position across three reference frames. Nat. Neurosci. 15, 1365-1367. doi: 10.1038/nn.3213
Nobre, A.C., Rao, A., and Chelazzi, L. (2006). Selective attention to specific features within objects: behavioral and electrophysiological evidence. J. Cogn. Neurosci. 18, 539-561. doi: 10.1162/jocn.2006.18.4.539
Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., and Cohen, J. D. (2000). Working memory for letters, shapes and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11, 424-446. doi: 10.1006/nimg.2000.0572
Oberauer, K. (2009). Design for a working memory. Psychol. Learn. Motiv. 51, 45100. doi: 10.1016/S0079-7421(09)51002-X
Page, M. P. A., and Norris, D. (1998). The primacy model: a new model of immediate serial recall. Psychol. Rev. 105, 761-781. doi: 10.1037//0033-295x.105.4.761-781
Pavani, F., Macaluso, E., Warren, J. D., Driver, J., and Griffiths, T. D. (2002). A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Curr. Biol. 12, 1584-1590. doi: 10.1016/s0960-9822(02) 01143-0
Petrich, J. A. F., Greenwald, M. L., and Berndt, R. S. (2007). An investigation of attentional contributions to visual errors in right “neglect dyslexia”. Cortex 43, 1036-1046. doi: 10.1016/s0010-9452(08)70701-9
Posner, M. I., Cohen, Y., and Rafal, R. D. (1982). Neural systems control of spatial orienting. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298, 187-198. doi: 10.1098/rstb.1982.0081
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience 139, 23-38. doi: 10.1016/j.neuroscience.2005.06.005
Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., and Fiez, J. A. . Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage 22, 562-573. doi: 10.1016/j.neuroimage.2004. 01.039
Sakai, K., Ramnani, N., and Passingham, R. E. (2002). Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J. Neurophysiol. 88,2035-2046. doi: 10.1152/jn.00116.2002
Serra, M., and Nairne, J. S. (2000). Part—set cuing of order information: implications for associative theories of serial order memory. Mem. Cognit. 28, 847-855. doi: 10.3758/bf03198420
Shaki, S., and Fischer, M. H. (2008). Reading space into numbers-a cross-linguistic comparison of the SNARC effect. Cognition 108, 590-599. doi: 10.1016/j.cognition.2008.04.001
Shaki, S., Fischer, M. H., and Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychon. Bull. Rev. 16, 328-331. doi: 10.3758/PBR.16.2.328
Shin, J. C., and Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. J. Exp. Psychol. Learn. Mem. Cogn. 28, 445-457. doi: 10.1037//0278-7393.28.3.445
Silk, T. J., Bellgrove, M. A., Wrafter, P., Mattingley, J. B., and Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. Neuroimage 53, 718-724. doi: 10.1016/j.neuroimage 2010.06.068
Smyth, M. M. (1996). Serial order in spatial immediate memory. Q. J. Exp. Psychol. A 49, 159-177. doi: 10.1080/713755615
Solway, A., Murdock, B. B., and Kahana, M. J. (2012). Positional and temporal clustering in serial order memory. Mem. Cognit. 40, 177-190. doi: 10.3758/s13421-011-0142-8
Spalek, T. M., and Hammad, S. (2005). The left-to-right bias in inhibition ofreturn is due to the direction of reading. Psychol. Sci. 16, 15-18. doi: 10.1111/j.0956-7976.2005.00774.x
Sternberg, S. (1967). Retrieval of contextual information from memory. Psychon. Sci. 8, 55-56. doi: 10.3758/bf03330664
Thomas, J. G., Milner, H. R., and Haberlandt, K. F. (2003). Forward and backward recall different response time patterns, same retrieval order. Psychol. Sci. 14, 169174. doi: 10.1111/1467-9280.01437
Todd, J. J., Fougnie, D., andMarois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol. Sci. 16, 965-972. doi: 10.1111/j.1467-9280.2005.01645.x
Todd, J. J., and Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751-754. doi: 10.1038/nature02466
Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J., and Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 106, 20942-20947. doi: 10.1073/pnas.0911331106
Trecy, M. P., Steve, M., and Martine, P. (2013). Impaired short-term memory for order in adults with dyslexia. Res. Dev. Disabil. 34, 2211-2223. doi: 10.1016/j.ridd.2013.04.005
Vandenberghe, R., and Gillebert, C. R. (2009). Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behav. Brain Res. 199, 171-182. doi: 10.1016/j.bbr.2008.12.005
Van der Lubbe, R. H., Bundt, C., and Abrahamse, E. L. (2014). Internal and external spatial attention examined with lateralized EEG power spectra. Brain Res. 1583, 179-192. doi: 10.1016/j.brainres.2014.08.007
van Dijck, J.-P., Abrahamse, E. L., Acar, F., Ketels, B., and Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. Q. J. Exp. Psychol. (Hove) 67, 1500-1513. doi: 10.1080/17470218.2014.903984
van Dijck, J.-P., Abrahamse, E. L., Majerus, S., and Fias, W. (2013). Spatial attention interacts with serial-order retrieval from verbal working memory. Psychol. Sci. 24, 1854-1859. doi: 10.1177/0956797613479610
van Dijck, J.-P., and Fias, W. (2011). A working memory account for spatial- numerical associations. Cognition 119, 114-119. doi: 10.1016/j.cognition.2010.12.013
van Dijck, J. P., Gevers, W., Lafosse, C., Doricchi, F., and Fias, W. (2011). Non- spatial neglect for the mental number line. Neuropsychologia 49, 2570-2583. doi: 10.1016/j.neuropsychologia.2011.05.005
von Allmen, D. Y., Wurmitzer, K., Martin, E., and Klaver, P. (2013). Neural activity in the hippocampus predicts individual visual short-term memory capacity. Hippocampus 23, 606-615. doi: 10.1002/hipo.22121
Whorf, B. L. (1956). Language, Thought and Reality: Selected Writings ofBenjamin Lee Whorf. ed J. B. Carroll, Cambridge, MA: MIT Press.
Zebian, S. (2005). Linkages between number concepts, spatial thinking and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates and illiterate Arabic speakers. J. Cogn. Cult. 5, 165-190. doi: 10.1163/1568537054068660
Zorzi, M., Priftis, K., and Umilta, C. (2002). Brain damage: neglect disrupts the mental number line. Nature 417, 138-139. doi: 10.1038/417138a