Asteroids; dynamics; Satellites of asteroids; Orbit determination
Abstract :
[en] In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here at characterizing the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14<SUB>-0.06</SUB><SUP>+0.09</SUP> (all uncertainties are reported as 3-σ range) we determine (average albedo of S-types is 0.197 ± 0.153, see Pravec et al. (Pravec et al. [2012]. Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 ± 0.0001 h, is close to circular (eccentricity lower than 0.1), and has pole coordinates within 7° of (225°, +86°) in Ecliptic J2000, implying a low obliquity of 1.5<SUB>-1.5</SUB><SUP>+6.0</SUP> deg . The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4<SUB>-1.2</SUB><SUP>+2.5</SUP> km and 3.6<SUB>-0.3</SUB><SUP>+0.7</SUP> km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be 2.91<SUB>-2.01</SUB><SUP>+1.72</SUP> gcm<SUP>-3</SUP> , lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry [2012]. Planet. Space Sci. 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g., LBT, ALMA).
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Carry, B.; IMCCE, Observatoire de Paris, UPMC Paris-06, Université Lille1, UMR8028 CNRS, 77 Av. Denfert Rochereau, 75014 Paris, France
Matter, A.; Max Planck institut für Radioastronomie, Auf dem Hügel, 69, 53121 Bonn, Germany
Scheirich, P.; Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 298, CZ-25165 Ondřejov, Czech Republic
Pravec, P.; Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 298, CZ-25165 Ondřejov, Czech Republic
Molnar, L.; Department of Physics and Astronomy, Calvin College, 3201 Burton SE, Grand Rapids, MI 49546, USA
Mottola, S.; Deutsches Zentrum für Luft- und Raumfahrt (DLR), 12489 Berlin, Germany
Carbognani, A.; Astronomical Observatory of the Autonomous Region of the Aosta Valley, Loc. Lignan 39, 11020 Nus (Aosta), Italy
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Marciniak, A.; Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
Binzel, R. P.; Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
DeMeo, F. E.; Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Birlan, M.; IMCCE, Observatoire de Paris, UPMC Paris-06, Université Lille1, UMR8028 CNRS, 77 Av. Denfert Rochereau, 75014 Paris, France
Delbo, M.; UNS-CNRS-Observatoire de la Côte dAzur, Laboratoire Lagrange, BP 4229 06304 Nice Cedex 04, France
Barbotin, E.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Behrend, R.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Bonnardeau, M.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Colas, F.; IMCCE, Observatoire de Paris, UPMC Paris-06, Université Lille1, UMR8028 CNRS, 77 Av. Denfert Rochereau, 75014 Paris, France
Farissier, P.; Club d'Astronomie de Lyon Ampère (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France
Fauvaud, M.; Observatoire du Bois de Bardon, 16110 Taponnat, France
Fauvaud, S.; Observatoire du Bois de Bardon, 16110 Taponnat, France
Gillier, C.; Club d'Astronomie de Lyon Ampère (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Hellmich, S.; Deutsches Zentrum für Luft- und Raumfahrt (DLR), 12489 Berlin, Germany
Hirsch, R.; Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
Leroy, A.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Manfroid, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Montier, J.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Morelle, E.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Richard, F.; Association T60, 14 Avenue Edouard Belin, 31400 Toulouse, France
Sobkowiak, K.; Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
Strajnic, J.; CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Switzerland
Vachier, F.; IMCCE, Observatoire de Paris, UPMC Paris-06, Université Lille1, UMR8028 CNRS, 77 Av. Denfert Rochereau, 75014 Paris, France)
Berger J.P., Segransan D. An introduction to visibility modeling. New Astron. Rev. 2007, 51:576-582.
Binzel R.P., Rivkin A.S., Stuart J.S., Harris A.W., Bus S.J., Burbine T.H. Observed spectral properties of near-Earth objects: Results for population distribution, source regions, and space weathering processes. Icarus 2004, 170:259-294.
Binzel, R.P., Thomas, C.A., DeMeo, F.E., Tokunaga, A., Rivkin, A.S., Bus, S.J., 2006. The MIT-Hawaii-IRTF joint campaign for NEO spectral reconnaissance. In: Mackwell, S., Stansbery, E. (Eds.), 37th Annual Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 37, p. 1491.
Brunetto R., de León J., Licandro J. Testing space weathering models on A-type Asteroid (1951) Lick. Astron. Astrophys. 2007, 472:653-656.
Brunetto R., Vernazza P., Marchi S., Birlan M., Fulchignoni M., Orofino V., Strazzulla G. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 2006, 184:327-337.
Burbine T.H., Binzel R.P. Small main-belt asteroid spectroscopic survey in the near-infrared. Icarus 2002, 159:468-499.
Carry B. Density of asteroids. Planet. Space Sci. 2012, 73:98-118.
Carry B., et al. Integral-field spectroscopy of (90482) Orcus-Vanth. Astron. Astrophys. 2011, 534:A115.
Carry B., Vernazza P., Dumas C., Merline W.J., Mousis O., Rousselot P., Jehin E., Manfroid J., Fulchignoni M., Zucconi J.-M. The remarkable surface homogeneity of the dawn mission target (1) Ceres. Icarus 2012, 217:20-26.
Chapman C.R. Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 2004, 32:539-567.
Chesneau O. MIDI: Obtaining and analysing interferometric data in the mid-infrared. New Astron. Rev. 2007, 51:666-681.
Consolmagno G.J., Britt D.T. The density and porosity of meteorites from the Vatican collection. Meteorit. Planet. Sci. 1998, 33:1231-1241.
Consolmagno G., Britt D., Macke R. The significance of meteorite density and porosity. Chemie der Erde/Geochemistry 2008, 68:1-29.
Delbo M., Ligori S., Matter A., Cellino A., Berthier J. First VLTI-MIDI direct determinations of asteroid sizes. Astrophys. J. 2009, 694:1228-1236.
DeMeo F., Binzel R.P. Comets in the near-Earth object population. Icarus 2008, 194:436-449.
DeMeo F., Carry B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 2013, 226:723-741.
DeMeo F.E., Carry B. Solar System evolution from compositional mapping of the asteroid belt. Nature 2014, 505:629-634.
DeMeo F.E., Binzel R.P., Slivan S.M., Bus S.J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 2009, 202:160-180.
Descamps P., Marchis F., Berthier J., Emery J.P., Duchêne G., de Pater I., Wong M.H., Lim L., Hammel H.B., Vachier F., Wiggins P., Teng-Chuen-Yu J.-P., Peyrot A., Pollock J., Assafin M., Vieira-Martins R., Camargo J.I.B., Braga-Ribas F., Macomber B. Triplicity and physical characteristics of Asteroid (216) Kleopatra. Icarus 2011, 211:1022-1033.
Fujiwara A., et al. The rubble-pile Asteroid Itokawa as observed by Hayabusa. Science 2006, 312:1330-1334.
Fulvio D., Brunetto R., Vernazza P., Strazzulla G. Space weathering of vesta and v-type asteroids: New irradiation experiments on HED meteorites. Astron. Astrophys. 2012, 537:L11.
Gaffey M.J. Space weathering and the interpretation of asteroid reflectance spectra. Icarus 2010, 209:564-574.
Gaffey M.J., Burbine T.H., Piatek J.L., Reed K.L., Chaky D.A., Bell J.F., Brown R.H. Mineralogical variations within the S-type asteroid class. Icarus 1993, 106:573-602.
Harris A.W. A thermal model for near-Earth asteroids. Icarus 1998, 131:291-301.
Jaffe, W.J., 2004. Coherent fringe tracking and visibility estimation for MIDI. In: Traub, W.A. (Ed.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5491, p. 715.
Kuchynka P., Folkner W.M. A new approach to determining asteroid masses from planetary range measurements. Icarus 2013, 222:243-253.
Leinert C., et al. Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI. Astron. Astrophys. 2004, 423:537-548.
Lord, S.D., 1992. A New Software Tool for Computing Earth's Atmospheric Transmission of Near- and Far-infrared Radiation. NASA Tech. Mem. (103957).
Mainzer A., et al. NEOWISE studies of spectrophotometrically classified asteroids: Preliminary results. Astrophys. J. 2011, 741:90.
Marchis F., Descamps P., Hestroffer D., Berthier J. Discovery of the triple asteroidal system 87 Sylvia. Nature 2005, 436:822-824.
Marchis F., et al. Shape, size and multiplicity of main-belt asteroids. Icarus 2006, 185(1):39-63.
Masiero J.R., et al. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophys. J. 2011, 741:68.
Matter A., Delbo M., Ligori S., Crouzet N., Tanga P. Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared. Icarus 2011, 215:47-56.
Matter A., Delbo M., Carry B., Ligori S. Evidence of a metal-rich surface for the Asteroid (16) Psyche from interferometric observations in the thermal infrared. Icarus 2013, 226:419-427.
Merline W.J., et al. Discovery of a Moon orbiting the Asteroid 45 Eugenia. Nature 1999, 401:565-568.
Molnar, L.A., et al., 2008. Lightcurve analysis of a magnitude limited asteroid sample. Minor Planet Bullet. 35, 9-12.
Murray C.D., Dermott S.F. Solar System Dynamics 1999, Cambridge University Press.
Nakamura T., et al. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 2011, 333:1113-1115.
Pätzold M., et al. Asteroid 21 Lutetia: Low mass, high density. Science 2011, 334:491-492.
Popescu M., Birlan M., Nedelcu D.A. Modeling of asteroid spectra - M4AST. Astron. Astrophys. 2012, 544:A130.
Pravec P., Scheirich P., Kušnirák P., Šarounová L., Mottola S., Hahn G., Brown P.G., Esquerdo G.A., Kaiser N., Krzeminski Z., Pray D.P., Warner B.D., Harris A.W., Nolan M.C., Howell E.S., Benner L.A.M., Margot J.-L., Galád A., Holliday W., Hicks M.D., Krugly Y.N., Tholen D.J., Whiteley R.J., Marchis F., Degraff D.R., Grauer A., Larson S., Velichko F.P., Cooney W.R., Stephens R., Zhu J., Kirsch K., Dyvig R., Snyder L., Reddy V., Moore S., Gajdoš Š., Világi J., Masi G., Higgins D., Funkhouser G., Knight B., Slivan S.M., Behrend R., Grenon M., Burki G., Roy R., Demeautis C., Matter D., Waelchli N., Revaz Y., Klotz A., Rieugné M., Thierry P., Cotrez V., Brunetto L., Kober G. Photometric survey of binary near-Earth asteroids. Icarus 2006, 181:63-93.
Pravec P., Harris A.W., Kušnirák P., Galád A., Hornoch K. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus 2012, 221:365-387.
Pravec P., Scheirich P., Vokrouhlický D., Harris A.W., Kušnirák P., Hornoch K., Pray D.P., Higgins D., Galád A., Világi J., Gajdoš Š., Kornoš L., Oey J., Husárik M., Cooney W.R., Gross J., Terrell D., Durkee R., Pollock J., Reichart D.E., Ivarsen K., Haislip J., Lacluyze A., Krugly Y.N., Gaftonyuk N., Stephens R.D., Dyvig R., Reddy V., Chiorny V., Vaduvescu O., Longa-Peña P., Tudorica A., Warner B.D., Masi G., Brinsfield J., Gonçalves R., Brown P., Krzeminski Z., Gerashchenko O., Shevchenko V., Molotov I., Marchis F. Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries. Icarus 2012, 218:125-143.
Rayner J.T., et al. SpeX: A medium-resolution 0.8-5.5micron spectrograph and imager for the NASA infrared telescope facility. Publicat. Astron. Soc. Pacific 2003, 115:362-382.
Rivkin A.S., Binzel R.P., Sunshine J., Bus S.J., Burbine T.H., Saxena A. Infrared spectroscopic observations of 69230 Hermes (1937 UB): possible unweathered endmember among ordinary chondrite analogs. Icarus 2004, 172:408-414.
Russell C.T., et al. Dawn at Vesta: Testing the protoplanetary paradigm. Science 2012, 336:684-686.
Sasaki S., Nakamura K., Hamabe Y., Kurahashi E., Hiroi T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 2001, 410:555-557.
Scheirich P., Pravec P. Modeling of lightcurves of binary asteroids. Icarus 2009, 200:531-547.
Shepard M.K., Clark B.E., Nolan M.C., Howell E.S., Magri C., Giorgini J.D., Benner L.A.M., Ostro S.J., Harris A.W., Warner B.D., Pray D.P., Pravec P., Fauerbach M., Bennett T., Klotz A., Behrend R., Correia H., Coloma J., Casulli S., Rivkin A.S. A radar survey of M- and X-class asteroids. Icarus 2008, 195:184-205.
Strazzulla G., Dotto E., Binzel R.P., Brunetto R., Barucci M.A., Blanco A., Orofino V. Spectral alteration of the Meteorite Epinal (H5) induced by heavy ion irradiation: A simulation of space weathering effects on near-Earth asteroids. Icarus 2005, 174:31-35.
Tody, D., 1993. IRAF in the nineties. In: Hanisch, R.J., Brissenden, R.J.V., Barnes, J. (Eds.), Astronomical Data Analysis Software and Systems II. Astronomical Society of the Pacific Conference Series, vol. 52, p. 173.
Vachier F., Berthier J., Marchis F. Determination of binary asteroid orbits with a genetic-based algorithm. Astron. Astrophys. 2012, 543:A68.
Vernazza P., Binzel R.P., Rossi A., Fulchignoni M., Birlan M. Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 2009, 458:993-995.
Vernazza P., Carry B., Emery J.P., Hora J.L., Cruikshank D.P., Binzel R.P., Jackson J., Helbert J., Maturilli A. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 2010, 207:800-809.
Walsh K.J., Richardson D.C., Michel P. Rotational breakup as the origin of small binary asteroids. Nature 2008, 454:188-191.
Zielenbach W. Mass determination studies of 104 large asteroids. Astron. J. 2011, 142:120-128.