Abstract :
[en] We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g_{a\gamma} < 5.3 x 10^{-12} GeV^{-1}, for m_a < 4.4 x 10^{-10} eV, and we also give its dependence at larger ALP masses. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.
Evoli, Carmelo; Hamburg University > II. Institute for Theoretical Physics
Fischer, Tobias; University of Wroclaw > Institute for Theoretical Physics
Giannotti, Maurizio; Barry University > Physical Sciences
Mirizzi, Alessandro; Hamburg University > II. Institute for Theoretical Physics
Ringwald, Andreas; Deutsches Elektronen-Synchrotron (DESY) > Theory group
Scopus citations®
without self-citations
239