Cascales - Miñana, Borja ; Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
Muñoz-Bertomeu, J.; Departament de Biologia Vegetal, Universitat de València, 46100 Burjassot (Valencia), Spain, Instituto de Biología Molecular y Celular de Plantas, Departamento Biotecnología, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Cientificas, C/Ingeniero Fausto Elio, 46022 Valencia, Spain
Flores-Tornero, M.; Departament de Biologia Vegetal, Universitat de València, 46100 Burjassot (Valencia), Spain
Anoman, A. D.; Departament de Biologia Vegetal, Universitat de València, 46100 Burjassot (Valencia), Spain
Pertusa, J.; Departament de Biologia Funcional i Antropologia Física, Universitat de València, 46100 Valencia, Spain
Alaiz, M.; Grupo de Componentes Bioactivos y Funcionales de Productos Vegetales, Departamento de Fisiología y Tecnología de Productos Vegetales, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
Osorio, S.; Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
Fernie, A. R.; Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
Segura, J.; Departament de Biologia Vegetal, Universitat de València, 46100 Burjassot (Valencia), Spain
Ros, R.; Departament de Biologia Vegetal, Universitat de València, 46100 Burjassot (Valencia), Spain
Language :
English
Title :
The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis
Publication date :
2013
Journal title :
Plant Cell
ISSN :
1040-4651
eISSN :
1532-298X
Publisher :
American Society of Plant Biologists, Rockville, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.
Bachelor, M.A., Lu, Y., and Owens, D.M. (2011). L-3-phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci. 63: 164-172.
Bauwe, H., Hagemann, M., and Fernie, A.R. (2010). Photorespiration: Players, partners and origin. Trends Plant Sci. 15: 330-336.
Boavida, L.C., and McCormick, S. (2007). Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52: 570-582.
Capron, A., Chatfield, S., Provart, N., and Berleth, T. (2009). Embryogenesis: Pattern formation from a single cell. The Arabidopsis Book 7: e0126, doi/10.1199/tab.0126.
Clough, S.J., and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C.E., and Schroeder, J.I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17: 3350-3361.
Curtis, M.D., and Grossniklaus, U. (2003). A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133: 462-469.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139: 5-17.
Devic, M. (2008). The importance of being essential: EMBRYODEFECTIVE genes in Arabidopsis. C. R. Biol. 331: 726-736.
Douce, R., Bourguignon, J., Neuburger, M., and Rébeillé, F. (2001). The glycine decarboxylase system: A fascinating complex. Trends Plant Sci. 6: 167-176.
Eichler, H.G., Hubbard, R., and Snell, K. (1981). The role of serine hydroxymethyltransferase in cell proliferation: DNA synthesis from serine following mitogenic stimulation of lymphocytes. Biosci. Rep. 1: 101-106.
Ge, X., Chang, F., and Ma, H. (2010). Signaling and transcriptional control of reproductive development in Arabidopsis. Curr. Biol. 20: R988-R997.
Grienenberger, E., Besseau, S., Geoffroy, P., Debayle, D., Heintz, D., Lapierre, C., Pollet, B., Heitz, T., and Legrand, M. (2009). A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J. 58: 246-259.
Handford, J., and Davies, D.D. (1958). Formation of phosphoserine from 3-phopho-glycerate in higher plants. Nature 182: 532-533.
Hanson, A.D., and Gregory, J.F., III., (2011). Folate biosynthesis, turnover, and transport in plants. Annu. Rev. Plant Biol. 62: 105-125.
Hanson, A.D., and Roje, S. (2001). One-carbon metabolism in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 119-137.
Ho, C.L., Noji, M., and Saito, K. (1999a). Plastidic pathway of serine biosynthesis. Molecular cloning and expression of 3-phosphoserine phosphatase from Arabidopsis thaliana. J. Biol. Chem. 274: 11007-11012.
Ho, C.L., Noji, M., Saito, M., and Saito, K. (1999b). Regulation of serine biosynthesis in Arabidopsis. Crucial role of plastidic 3- phosphoglycerate dehydrogenase in non-photosynthetic tissues. J. Biol. Chem. 274: 397-402.
Ho, C.L., Noji, M., Saito, M., Yamazaki, M., and Saito, K. (1998). Molecular characterization of plastidic phosphoserine aminotransferase in serine biosynthesis from Arabidopsis. Plant J. 16: 443-452.
Ho, C.L., and Saito, K. (2001). Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids 20: 243-259.
Hunt, E., Gattolin, S., Newbury, H.J., Bale, J.S., Tseng, H.M., Barrett, D.A., and Pritchard, J. (2010). A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J. Exp. Bot. 61: 55-64.
Kalhan, S.C., and Hanson, R.W. (2012). Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 287: 19786-19791.
Kawanabe, T., Ariizumi, T., Kawai-Yamada, M., Uchimiya, H., and Toriyama, K. (2006). Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol. 47: 784-787.
Kleczkowski, L.A., and Givan, C.V. (1988). Serine formation in leaves by mechanisms other than the glycolate pathway. J. Plant Physiol. 132: 641-652.
Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melo-Oliveira, R., and Coruzzi, G.M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 569-593.
Larsson, C., and Albertsson, E. (1979). Enzymes related to serine synthesis in spinach chloroplasts. Physiol. Plant. 45: 7-10.
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1: 387-396.
Locasale, J.W., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43: 869-874.
Matsuhara, S., Jingu, F., Takahashi, T., and Komeda, Y. (2000). Heat-shock tagging: A simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J. 22: 79-86.
Maurino, V.G., and Peterhansel, C. (2010). Photorespiration: Current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13: 249-256.
Michard, E., Lima, P.T., Borges, F., Silva, A.C., Portes, M.T., Carvalho, J.E., Gilliham, M., Liu, L.H., Obermeyer, G., and Feijó, J.A. (2011). Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332: 434-437.
Mothet, J.P., Parent, A.T., Wolosker, H., Brady, R.O., Jr., Linden, D.J., Ferris, C.D., Rogawski, M.A., and Snyder, S.H. (2000). D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA 97: 4926-4931.
Muñoz-Bertomeu, J., Anoman, A.D., Toujani, W., Cascales- Miñana, B., Flores-Tornero, M., and Ros, R. (2011a). Interactions between abscisic acid and plastidial glycolysis in Arabidopsis. Plant Signal. Behav. 6: 157-159.
Muñoz-Bertomeu, J., Bermúdez, M.A., Segura, J., and Ros, R. (2011b). Arabidopsis plants deficient in plastidial glyceraldehyde-3- phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. J. Exp. Bot. 62: 1229-1239.
Muñoz-Bertomeu, J., Cascales-Miñana, B., Alaiz, M., Segura, J., and Ros, R. (2010a). A critical role of plastidial glycolytic glyceraldehyde- 3-phosphate dehydrogenase in the control of plant metabolism and development. Plant Signal. Behav. 5: 67-69.
Muñoz-Bertomeu, J., Cascales-Miñana, B., Irles-Segura, A., Mateu, I., Nunes-Nesi, A., Fernie, A.R., Segura, J., and Ros, R. (2010b). The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol. 152: 1830-1841.
Muñoz-Bertomeu, J., Cascales-Miñana, B., Mulet, J.M., Baroja- Fernández, E., Pozueta-Romero, J., Kuhn, J.M., Segura, J., and Ros, R. (2009). Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol. 151: 541-558.
Muralla, R., Lloyd, J., and Meinke, D. (2011). Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS ONE 6: e28398.
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45.
Pollari, S., Käkönen, S.M., Edgren, H., Wolf, M., Kohonen, P., Sara, H., Guise, T., Nees, M., and Kallioniemi, O. (2011). Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125: 421-430.
Possemato, R., et al. (2011). Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476: 346-350.
Riens, B., Lohaus, G., Heineke, D., and Heldt, H.W. (1991). Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol. 97: 227-233.
Scholl, R.L., May, S.T., and Ware, D.H. (2000). Seed and molecular resources for Arabidopsis. Plant Physiol. 124: 1477-1480.
Slaughter, J.C., and Davies, D.D. (1968). The isolation and characterization of 3-phosphoglycerate dehydrogenase from peas. Biochem. J. 109: 743-748.
Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2: 755-767.
Till, B.J., et al. (2003). Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13: 524-530.
Timm, S., Mielewczik, M., Florian, A., Frankenbach, S., Dreissen, A., Hocken, N., Fernie, A.R., Walter, A., and Bauwe, H. (2012). High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS ONE 7: e42809.
Tolbert, N.E. (1980). Photorespiration. In The Biochemistry of plants, D.D. Davies, ed (New York: Academic Press), pp. 488-525.
Walton, N.J., and Woolhouse, H.W. (1986). Enzymes of serine and glycine metabolism in leaves and nonphotosynthetic tissues of Pisum sativum L. Planta 167: 119-128.
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2: e718.
Yamaoka, Y., Yu, Y., Mizoi, J., Fujiki, Y., Saito, K., Nishijima, M., Lee, Y., and Nishida, I. (2011). PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. Plant J. 67: 648-661.
Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z.A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19: 3530-3548.
Yoshida, K., Furuya, S., Osuka, S., Mitoma, J., Shinoda, Y., Watanabe, M., Azuma, N., Tanaka, H., Hashikawa, T., Itohara, S., and Hirabayashi, Y. (2004). Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J. Biol. Chem. 279: 3573-3577.
Zhang, Y., Sun, K., Sandoval, F.J., Santiago, K., and Roje, S. (2010). One-carbon metabolism in plants: Characterization of a plastid serine hydroxymethyltransferase. Biochem. J. 430: 97-105.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.