biodiversity changes; diversification; floristic turnover; mass extinction; plant fossils; PyRate
Abstract :
[en] Plants have a long evolutionary history, during which mass extinction events dramatically
affected Earth’s ecosystems and its biodiversity. The fossil record can shed light on the diversi-
fication dynamics of plant life and reveal how changes in the origination–extinction balance
have contributed to shaping the current flora.
We use a novel Bayesian approach to estimate origination and extinction rates in plants
throughout their history. We focus on the effect of the ‘Big Five’ mass extinctions and on estimating
the timing of origin of vascular plants, seed plants and angiosperms.
Our analyses show that plant diversification is characterized by several shifts in origination
and extinction rates, often matching the most important geological boundaries. The estimated
origin of major plant clades predates the oldest macrofossils when considering the uncertainties
associated with the fossil record and the preservation process.
Our findings show that the commonly recognized mass extinctions have affected each plant
group differently and that phases of high extinction often coincided with major floral turnovers.
For instance, after the Cretaceous–Paleogene boundary we infer negligible shifts in
diversification of non-flowering seed plants, but find significantly decreased extinction in
spore-bearing plants and increased origination rates in angiosperms, contributing to their current
ecological and evolutionary dominance.
Silvestro, Daniel ✱; Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-413 19 G€oteborg, Sweden
Cascales - Miñana, Borja ✱; 2CNRS, UMR Botanique et Bioinformatique de l’Architecture des Plantes (AMAP), Montpellier F-34000, France > Present adress: 3 PPP, Departement de Geologie, Universite de Liege, Allee du 6 Aout, B18 Sart Tilman, B4000 Liege, Belgium
Bacon, Christine D.; Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-413 19 G€oteborg, Sweden > Laboratorio de Biologıa Molecular (CINBIN), Department of Biology, Universidad Industrial de Santander, Bucaramanga, Colombia
Antonelli, Alexandre; Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-413 19 G€oteborg, Sweden > Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-413 2 19 G€oteborg, Sweden
✱ These authors have contributed equally to this work.
Language :
English
Title :
Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fursich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D et al. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences, USA 98: 6261-6266.
Anderson JM, Anderson HM, Cleal CJ. 2007. Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. Pretoria, South Africa: South African National Biodiversity Institute.
Bell CD, Soltis DE, Soltis P. 2010. The age and diversification of angiosperms re-revisited. American Journal of Botany 97: 1296-1303.
Benton MJ. 1985. Mass extinction among non-marine tetrapods. Nature 316: 811-814.
Bonis RB, Kürschner WM. 2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology 38: 240-264.
Boulter MC, Spicer RA, Thomas BA. 1988. Patterns of plant extinction from some palaeobotanical evidence. In: Larwood GP, ed. Extinction and survival in the fossil record. Oxford, UK: Oxford University Press, 1-36.
Cascales-Miñana B, Cleal CJ. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26: 195-200.
Cascales-Miñana B, Meyer-Berthaud B. 2014. Diversity dynamics of Zosterophyllopsida. Lethaia 47: 205-215.
Cleal CJ. 1993. Plants. In: Benton MJ, ed. The fossil record. London, UK: Chapman and Hall, 779-794.
Cleal CJ. 2008a. Palaeofloristics of Middle Pennsylvanian lyginopteridaleans in variscan Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 1-14.
Cleal CJ. 2008b. Palaeofloristics of Middle Pennsylvanian medullosaleans in variscan Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 164-180.
Cleal CJ. 2008c. Westphalian-Stephanian macrofloras of the southern Pennine Basin, UK. Studia Geologica Polonica 129: 25-41.
Cleal CJ. 2015. The generic taxonomy of Pennsylvanian age marattialean fern frond adpressions. Palaeontographica Abteilung B 292: parts 1-3.
Cleal CJ, Cascales-Miñana B. 2014. Composition and dynamics of the great Phanerozoic evolutionary floras. Lethaia 47: 469-484.
Cleal CJ, Oplustil S, Thomas BA, Tenchov Y. 2011. Pennsylvanian vegetation and climate in tropical variscan Euramerica. Episodes 34: 3-12.
Cleal CJ, Thomas BA. 2010. Botanical nomenclature and plant fossils. Taxon 59: 261-268.
Cleal CJ, Uhl D, Cascales-Miñana B, Thomas BA, Bashforth AR, King SC, Zodrow EL. 2012. Plant biodiversity changes in Carboniferous tropical wetlands. Earth-Science Reviews 114: 124-155.
Cohen K, Finney S, Gibbard P, Fan J. 2013. The ICS international chronostratigraphic chart. Episodes 36: 199-204.
Collinson ME. 1996. "What use are fossil ferns?" - 20 years on: with a review of the fossil history of extant pteridophyte families and genera. In: Camus MG, Johns J, eds. Pteridology in perspective. Richmond, UK: Royal Botanic Gardens, Kew, 349-394.
Crepet WL, Niklas KJ. 2009. Darwin's second "abominable mystery": why are there so many angiosperm species? American Journal of Botany 96: 366-381.
Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London, UK: John Murray.
Decombeix A, Meyer-Berthaud B, Galtier J. 2011. Transitional changes in arborescent ligniophytes at the Devonian-Carboniferous boundary. Journal of the Geological Society 168: 547-557.
Dimitrova TK, Zodrow EL, Cleal CJ, Thomas BA. 2010. Palynological evidence for Pennsylvanian (Late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada. Geological Journal 45: 388-396.
Doyle JA, Endress PK. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. Journal of Systematics and Evolution 48: 1-35.
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetic with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973.
Edwards D, Richardson JB. 2004. Silurian and Lower Devonian plant assemblages from the Anglo-Welsh Basin: a palaeobotanical and palynological synthesis. Geological Journal 39: 375-402.
Edwards D, Wellman CH. 2001. Embryophytes on land: the Ordovician to Lochkovian (Lower Devonian) record. In: Gensel PG, Edwards D, eds. Plants invade the land. Evolutionary and environmental perspectives. New York, NY, USA: Columbia University Press, 3-28.
Friis EM, Crane PR, Pedersen KR. 2011. Early flowers and angiosperm evolution. Cambridge, UK: Cambridge University Press.
Friis EM, Pedersen KR, Crane PR. 2010. Diversity in obscurity: fossil flowers and the early history of angiosperms. Philosophical Transactions of the Royal Society B 365: 369-382.
Fröbisch J. 2013. Vertebrate diversity across the end-Permian mass extinction: separating biological and geological signals. Palaeogeography, Palaeoclimatology, Palaeoecology 372: 50-61.
Galtier J, Bethoux O. 2002. Morphology and growth habit of Dicksonites pluckenetii from the Upper Carboniferous of Graissessac (France). Geobios 35: 525-535.
Galtier J, Meyer-Berthaud B. 2006. The diversification of early arborescent seed ferns. The Journal of the Torrey Botanical Society 133: 7-19.
Gelman A. 2004. Bayesian data analysis. Boca Raton, FL, USA: Chapman & Hall/CRC.
Hao SG, Xue JZ. 2013. Earliest record of megaphylls and leafy structures, and their initial diversification. Chinese Science Bulletin 58: 2784-2793.
Heath TA. 2012. A hierarchical Bayesian model for calibrating estimates of species divergence times. Systematic Biology 61: 793-809.
Heath TA, Hulsenbeck JP, Stadler T. 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences, USA 111: 2957-2966.
Ho SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367-380.
Hochuli PA, Feist-Burkhardt S. 2013. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Frontiers in Plant Science 4: 1-14.
Jablonski D. 2005. Mass extinctions and macroevolution. Paleobiology 31: 192-210.
Janevski GA, Baumiller TK. 2009. Testing for extinction selectivity in the fossil record of Phanerozoic marine invertebrates. Paleobiology 35: 553-564.
Kenrick P, Crane PR. 1997. The origin and early evolution of plants on land. Nature 389: 33-39.
Kenrick P, Wellman CH, Schneider H, Edgecombe GD. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Paleozoic. Proceedings of the Royal Society B 367: 519-536.
Krug AZ, Jablonski D, Valentine JW. 2009. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323: 767-771.
Labandeira CC, Sepkoski JJ. 1993. Insect diversity in the fossil record. Science 261: 310-315.
Lepage T, Bryant D, Phillippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24: 2669-2680.
Liow L, Skaug H, Ergon T, Schweder T. 2010. Global occurrence trajectories of microfossils: environmental volatility and the rises and falls of individual species. Paleobiology 36: 224-252.
Liow LH, Stenseth NC. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society B 274: 2745-2752.
Longrich NR, Bhullar BAS, Gauthier JA. 2012. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences, USA 109: 21 396-21 401.
Longrich NR, Tokaryk T, Field DJ. 2011. Mass extinction of birds at the Cretaceous-Paleogene (K-PG) boundary. Proceedings of the National Academy of Sciences, USA 108: 15 253-15 257.
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437-453.
Magallón S. 2010. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of Angiosperms. Systematic Biology 59: 384-399.
Magallón S, Hilu KW, Quandt D. 2013. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. American Journal of Botany 100: 556-573.
McElwain JC, Punyasena SW. 2010. Mass extinction events and the plant fossil record. TRENDS in Ecology and Evolution 22: 548-557.
McLoughlin S, Carpenter RJ, Jordan GJ, Hill RS. 2008. Seed ferns survived the end-Cretaceous mass extinction in Tasmania. American Journal of Botany 95: 465-471.
Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TLL, Stadler T et al. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: 521-524.
Meyer-Berthaud B, Soria A, Decombeix A-L. 2010. The land plant cover in the Devonian a reassessment of the evolution of the tree habitat. Geological Society Special Publication 339: 59-70.
Niklas K. 1997. The evolutionary biology of plants. Chicago, IL, USA: The University of Chicago Press.
Niklas KJ, Tiffney BH, Knoll AH. 1983. Patterns in vascular land plant diversification. Nature 303: 614-616.
Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618-622.
Raubeson LA, Jansen RK. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697-1699.
Raup DM, Sepkoski JJ. 1982. Mass extinctions in the marine fossil record. Science 215: 1501-1503.
Retallack G. 2013. Permian and Triassic greenhouse crises. Gondwana Research 24: 90-103.
Rees PM. 2002. Land-plant diversity and the end-Permian mass extinction. Geology 30: 827-830.
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61: 973-999.
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ et al. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology 61: 289-313.
Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327: 1214-1218.
Sepkoski JJ. 1978. A kinetic-model of phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4: 223-251.
Sepkoski JJ. 1979. A kinetic-model of phanerozoic taxonomic diversity II. Early phanerozoic families and multiple equilibria. Paleobiology 5: 222-251.
Sepkoski JJ, Bambach RK, Raup DM, Valentine JW. 1981. Phanerozoic marine diversity and the fossil record. Nature 293: 435-437.
Silvestro D, Salamin N, Schnitzler J. 2014a. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods in Ecology and Evolution 5: 1126-1131.
Silvestro D, Schnitzler J, Liow LH, Antonelli A, Salamin N. 2014b. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Systematic Biology 63: 349-367.
Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, USA 107: 5897-5902.
Tomescu AMF. 2009. Megaphylls, microphylls and the evolution of leaf development. Trends in Plant Science 14: 5-12.
Vecoli M, Meyer-Berthaud B, Clement G. 2010. Introduction. In: Vecoli M, Clement G, eds. The terrestrialization process: modeling complex interactions at the biosphere-geosphere interface. London, UK: Geological Society, 1-3.
Wang Q, Ferguson DK, Guang-Ping F, Ablaev AG, Wang Y-F, Yang J, Li Y-L, Li C-S. 2010. Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun China. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 323-331.
Wang Q, Geng BY, Dilcher DL. 2005. New perspective on the architecture of the late devonian arborescent lycopsid Leptophloeum rhombicum (Leptophloeaceae). American Journal of Botany 92: 83-91.
Wellman C, Steemans P, Vecoli M. 2013. Palaeophytogeography of Ordovician-Silurian land plants. In: Harper DAT, Servais T, eds. Early palaeozoic biogeography and palaeogeography. London, UK: Geological Society, 461-476.
Wellman CH. 2014. The nature and evolutionary relationships of the earliest land plants. New Phytologist 202: 1-3.
Xing Y, Onstein RE, Carter RJ, Stadler T, Linder HP. 2014. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity and turnover rates are disconnected. Evolution 68: 2821-2832.
Xiong C, Wang Q. 2011. Permian-Triassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37: 157-167.
Xiong C, Wang DM, Benton MJ, Xue JZ, Meng M, Zhao Q, Zhang J. 2013. Diversity dynamics of silurian-early carboniferous land plants in south China. PLoS ONE 8: e75706.