[en] Inland waters have been recognized as a~significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Nowadays, direct measurements of water pCO2 remain scarce in freshwaters and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (Equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14.2 mmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were > 10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were > 100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, that increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. We recommend that regional studies on pCO2 should not be based on pH and TA data only, and that direct measurements of pCO2 should become the primary method in inland waters in general, and in particular in acidic, poorly buffered, freshwaters.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Abril, Gwenael
Bouillon, Steven
Darchambeau, François ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Teodoru, C.R
Marwick, T.R
Tamooh, F
Ochieng Omengo, F
Geeraert, Nina
Deirmendjian, Loris ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Polsenaere, Paul
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Language :
English
Title :
Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters
Publication date :
2015
Journal title :
Biogeosciences
ISSN :
1726-4170
eISSN :
1726-4189
Publisher :
European Geosciences Union (EGU), Katlenburg-Lindau, Germany
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Åberg, J. and Wallin M. B.: Evaluating a fast headspace method for measuring DIC and subsequent calculation of pCO2 in freshwater systems, Inland Wat. 4,157-166, 2014.
Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., Dos Santos, M. A., and Matvienko, B.: Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit-Saut. French Guiana), Global Biogeochem. Cy., 19, GB4007, doi:10.1029/2005GB002457, 2005.
Abril, G., Richard, S., and Guérin, F.: In-Situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator, Sc. Total Envir., 354, 246-251, 2006.
Abril, G., Martinez, J.-M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F., Vidal L., Meziane, T., Kim, J.-H., Bernardes, M. C., Savoye, N., Deborde, J., Albéric, P., Souza, M. F. L., Souza, E. L., and Roland, F.: Amazon River Carbon Dioxide Outgassing fuelled by Wetlands, Nature, 505, 395-398, 2014.
Barros, N., Cole, J. J., Tranvik L. J., Prairie Y. T., Bastviken D., Huszar V. L. M., del Giorgio P., and Roland F.: Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude, Nat. Geosci.,4, 593-596, doi:10.1038/NGEO1211, 2011.
Borges, A. V., Bouillon, S., Abril, G., Delille, B., Poirier, D., Commarieu, M.-V., Lepoint, G., Morana, C., Servais, P., Descy, J.-P., and Darchambeau, F.: Variability of carbon dioxide and methane in the epilimnion of Lake Kivu, in: Lake Kivu: Limnology and biogeochemistry of a tropical great lake, edited by: Descy, J.-P., Darchambeau, F., and Schmid, M., Aquatic Ecology Series 5, Springer, 47-66, 2012.
Borges, A. V.,Morana, C., Bouillon, S., Servais, P., Descy, J.-P., and Darchambeau, F.: Carbon cycling of Lake Kivu (East Africa): net autotrophy in the epilimnion and emission of CO2 to the atmosphere sustained by geogenic inputs, PLoS ONE, 9, e109500, doi:10.1371/journal.pone.0109500, 2014.
Butman, D. and Raymond, P.A.: Significant efflux of carbon dioxide from streams and rivers in the United States, Nature Geosci., 4, 839-842, 2011.
Cai, W.-J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA, Geochim. Cosmochim. Ac., 62, 473-483, 1998.
Cai, W.-J., Guo, X., Chen, C. T. A., Dai, M., Zhang, L., Zhai, W., Lohrenz, S. E., Yin, K., Harrison, P. J., and Wang, Y.: A comparative overview of weathering intensity and HCO 3 flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers, Cont. Shelf Res., 28, 1538-1549, 2008.
Cole, J. J., Caraco, N., Kling, G.W., and Kratz, T. K.: Carbon dioxide supersaturation in the surface waters of lakes, Science, 265, 1568-1570, 1994.
Cullison Gray, S. E., DeGranpre, M. E., Moore, T. S., Martz, T. R., Friedrich, G. E., and Johnson, K. S.: Applications of in situ pH measurements for inorganic carbon calculations, Mar. Chem., 125, 82-90, 2011.
Dinsmore, K. J., Wallin M. B., Johnson, M. S., Billett M. F., Bishop, K., Pumpanen, J., and Ojala, A.: Contrasting CO2 concentration discharge dynamics in headwater streams: A multicatchment comparison, J. Geophys. Res. Biogeosci., 118, 445-461, doi:10.1002/jgrg.20047, 2012.
Driscoll, C. T., Fuller, R., D., and Schecher, W. D.: The role of organic acids in the acidification of surface waters in the eastern US, Water Air Soil Pollut., 43, 21-40, 1989.
Frankignoulle, M. and Borges, A. V.: Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values, Aquat. Geochem., 7, 267-273, 2001.
Frankignoulle, M., Borges, A. V., and Biondo, R.: A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments, Water Res., 35, 1344-1347, 2001.
Gran, G.: Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid, Oceanol. Acta, 5, 209-218, 1952.
Guérin, F., Abril, G., Sercą, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., and Varfalvy, L.: Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream, J. Mar. Syst., 66, 161-172, 2007.
Harned, H. S. and Scholes, S. R.: The ionization constant of HCO 3 from 0 to 50-C, J. Am. Chem. Soc., 63, 1706-1709, 1941.
Harned, H. S. and Davis, R. D.: The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50-C, J. Am. Chem. Soc., 65, 2030-2037, 1943.
Hemond, H. F.: Acid neutralizing capacity, alkalinity, and acid-base status of natural waters containing organic acids, Environ. Sci. Technol., 24, 1486-1489, 1990.
Hope, D., Dawson, J. J. C., Cresser, M. S., and Billett, M. F.: A method for measuring free CO2 in upland streamwater using headspace analysis, J. Hydrol., 166, 1-14, 1995.
Hruska, J., Köhler, S., Laudon, H., and Bishop, K.: Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones, Environ. Sci. Technol., 37, 1726-1730, 2003.
Humborg, C., Mörth, C. M., Sundbom, M., Borg, H., Blenckner, T., Giesler, R., and Ittekkot, V.: CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering, Glob. Change Biol., 16, 1966-1978, 2010.
Hunt, C. W., Salisbury, J. E., and Vandemark, D.: Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers, Biogeosciences, 8, 3069-3076, 2011, http://www.biogeosciences.net/8/3069/2011/.
Johnson, M. J., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., and Jassal, R. S.: Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications, Ecohydrol., 3, 68-78, 2010.
Kempe, S.: A computer program for hydrochemical problems in karstic water. Annales de Spéleólogie 30, 699-702, 1975.
Kempe, S.: Sinks of the anthropogenically enhanced carbon cycle in surface freshwaters, J. Geophys. Res., 89, 4657-4676, 1984.
Kratz, T. K., Schindler, J., Hope, D., Riera, J. L., and Bowser, C. J.: Average annual carbon dioxide concentrations in eight neighboring lakes in northern Wisconsin, USA. Verh. Internat. Verein. Limnol., 26, 335-338, 1997.
Liss, P. S. and Slater P. G,: Flux of gases across the air-sea interface. Nature, 233, 327-329, 1974.
Marwick, T. R., Tamooh, F., Ogwoka, B., Teodoru, C., Borges, A. V., Darchambeau, F., and Bouillon S.: Dynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi-Galana-Sabaki River, Kenya, Biogeosciences, 11, 1-18, doi:10.5194/bg-11-1-2014, 2014a
Marwick, T. R., Borges A. V., Van Acker K., Darchambeau F., and Bouillon S.: Disproportionate contribution of riparian inputs to organic carbon pools in freshwater systems, Ecosystems, 17, 974-989, 2014b.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved loads, American J. Science, 287, 401-428, 1987.
Millero, F. J.: The thermodynamics of the carbonic acid system in seawater, Geochim. Cosmochim. Ac., 43, 1651-1661, 1979.
Neal, C., House, W. A., and Down, K.: An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements, Sc. Total Envir., 210/211, 173-185, 1998.
Park, P. K.: Oceanic CO2 system: An evaluation of ten methods of investigation, Limnol. Oceanogr., 14, 179-186, 1969.
Parkhurst, D. L. and Appelo, C. A. J.: User's guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: US Geol. Surv.Water-Resour. Investigat. Report, 99-4259, 312 pp., 1999.
Polsenaere, P., Savoye, N., Etcheber, H., Canton, M., Poirier, D., Bouillon, S., and Abril ,G.: Export and degassing of terrestrial carbon through watercourses draining a temperate podsolised catchment, Aquatic Sciences, 75, 299-319, 2013.
Raymond, P. A., Caraco, N. F., and Cole J. J.: Carbon dioxide concentration and atmospheric flux in the Hudson River, Estuaries, 20, 381-390, 1997.
Raymond, P. A., Hartmann, J., Lauerwald R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355-359, 2013.
Sobek, S., Tranvik L. J., and Cole, J. J.: Temperature independence of carbon dioxide supersaturation in global lakes, Global Biogeochem. Cy., 19, GB2003, doi:10.1029/2004GB002264, 2005.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry, Wiley-Interscience, New York, 1996.
Tamooh, F., Borges, A. V., Meysman, F. J. R., Van Den Meersche, K., Dehairs, F., Merckx, R., and Bouillon, S.: Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya, Biogeosciences, 10, 6911-6928, doi:10.5194/bg-10-6911-2013, 2013.
Teodoru, C. R., del Giorgio P. A., Prairie Y. T., and Camire M., Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada, Global Biogeochem. Cy., 23, GB2012, doi:10.1029/2008GB003404, 2009.
Teodoru, C. R., Nyoni, F. C., Borges, A. V., Darchambeau, F., Nyambe, I., and Bouillon, S.: Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries, Biogeosciences Discuss., 11, 16391-16445, doi:10.5194/bgd-11-16391-2014, 2014.
Vyverman,W.: Limnological Features of Lakes on the Sepik-Ramu Floodplain, Papua New Guinea Aust, J. Mar. Freshwater Res., 45, 1209-1224, 1994.
Wallin, M. B., Löfgren, S., Erlandsson, M., and Bishop, K.: Representative regional sampling of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal underestimates in less systematic approaches, Glob. Biogeochem. Cy., 28, 465-479, 2014.
Wang, Z. A., Bienvenu, D. J., Mann, P. J., Hoering, K. A., Poulsen, J. R., Spencer, R. G. M., and Holmes, R. M. Inorganic carbon speciation and fluxes in the Congo River. Geophys. Res. Lett., 40, 511-516, 2013.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203-215, 1974.
Weiss, R. F.: Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography, J. Chromatogr. Sci., 19, 611-616, 1981.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.