Jupiter; aurora; ultraviolet; electron energy; mapping; magnetosphere
Abstract :
[en] Far ultraviolet spectral observations have been made with the Hubble Space Telescope in the
time-tag mode using the Space Telescope Imaging Spectrograph (STIS) long slit. The telescope was slewed in such a way that the slit projection scanned from above the polar limb down to midlatitudes, allowing us to build up the first spectral maps of the FUV Jovian aurora. The shorter wavelengths are partly absorbed by the methane layer overlying part of the auroral emission layer. The long-wavelength intensity directly reflects the precipitated energy flux carried by the auroral electrons. Maps of the intensity ratio of the two spectral regions have been obtained by combining spectral emissions in two wavelength ranges. They show that the amount of absorption by methane varies significantly between the different components of the aurora and inside the main emission region. Some of the polar emissions are associated with the hardest precipitation,
although the auroral regions of strong electron precipitation do not necessarily coincide with the highest electron energies. Outputs from an electron transport model are used to create maps of the distribution of the characteristic electron energies. Using model atmospheres adapted to auroral conditions, we conclude that electron energies range between a few tens to several hundred keV. Comparisons of derived energies are in general agreement with those calculated from magnetosphere-ionosphere coupling models, with values locally exceeding the standard model predictions. These results will provide useful input for three-dimensional modeling of the distribution of particle heat sources into the high-latitude Jovian upper atmosphere.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Radioti, Aikaterini ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clarke, J.T.
Gladstone, G.R.
Waite, J.H.
Bisikalo, D.
Shematovich, V.I.
Language :
English
Title :
Mapping the electron energy in Jupiter’s aurora: Hubble spectral observations
Publication date :
November 2014
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Wiley, Hoboken, United States
Volume :
119
Pages :
9072-9088
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PRODEX
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Service Public Fédéral de Programmation Politique scientifique
Achilleos, N., S. Miller, J. Tennyson, A. D. Aylward, I. Mueller-Wodarg, and D. Rees (1998), JIM: A time-dependent, three-dimensional model of Jupiter's thermosphere and ionosphere, J. Geophys. Res., 103(E9), 20,089–20,112, doi:10.1029/98JE00947.
Ajello, J. M., et al. (1998), Galileo orbiter ultraviolet observations of Jupiter aurora, J. Geophys. Res., 103(E9), 20,125–20,148, doi:10.1029/98JE00832.
Badman, S. V., G. Branduardi-Raymont, M. Galand, S. L. G. Hess, N. Krupp, L. Lamy, H. Melin, and C. Tao (2014), Auroral processes at the giant planets: Energy deposition, emission mechanisms, morphology and spectra, Space Sci. Rev., doi:10.1007/s11214-014-0042-x.
Bhardwaj, A., and G. R. Gladstone (2000), Auroral emissions of the giant planets, Rev. Geophys., 38(3), 295–353, doi:10.1029/1998RG000046.
Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P. A. Delamere, and J. T. Clarke (2009), The Io UV footprint: Location, inter-spot distances and tail vertical extent, J. Geophys. Res., 114, A07224, doi:10.1029/2009JA014312.
Bonfond, B., M. F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, and V. Coumans (2011), Quasi-periodic polar flares at Jupiter: A signature of pulsed dayside reconnections?, Geophys. Res. Lett., 38, L02104, doi:10.1029/2010GL045981.
Bonfond, B., D. Grodent, J.-C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and J. Gustin (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi:10.1029/2011GL050253.
Bougher, S. W., J. H. Waite, T. Majeed, and G. R. Gladstone (2005), Jupiter thermospheric general circulation model (JTGCM): Global structure and dynamics driven by auroral and Joule heating, J. Geophys. Res., 110, E04008, doi:10.1029/2003JE002230.
Branduardi-Raymont, G., R. F. Elsner, M. Galand, D. Grodent, T. E. Cravens, P. Ford, G. R. Gladstone, and J. H. Waite Jr. (2008), Spectral morphology of the X-ray emission from Jupiter's aurorae, J. Geophys. Res., 113, A02202, doi:10.1029/2007JA012600.
Broadfoot, A. L., et al. (1981), Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter, J. Geophys. Res., 86(A10), 8259–8284, doi:10.1029/JA086iA10p08259.
Bunce, E. J., S. W. H. Cowley, and T. K. Yeoman (2004), Jovian cusp processes: Implications for the polar aurora, J. Geophys. Res., 109, A09S13, doi:10.1029/2003JA010280.
Clarke, J. T., et al. (1996), Far-Ultraviolet imaging of Jupiter's aurora and the Io “footprint”, Science, 274, 404–409, doi:10.1126/science.274.5286.404.
Clarke, J. T., et al. (2002), Ultraviolet auroral emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415, 997–1000.
Clarke, J. T., D. Grodent, S. W. H. Cowley, E. J. Bunce, P. Zarka, J. E. P. Connerney, and T. Satoh (2004), Jupiter's aurora, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 639–670, Cambridge Univ. Press, New York.
Clarke, J. T., et al. (2009), Response of Jupiter's and Saturn's auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi:10.1029/2008JA013694.
Cowley, S. W. H. (2006), Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons, Ann. Geophys., 24, 325–338, doi:10.5194/angeo-24-325-2006.
Cowley, S. W. H., and E. J. Bunce (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space Sci., 49, 1067–1088.
Cowley, S. W. H., E. J. Bunce, and J. D. Nichols (2003), Origins of Jupiter's main oval auroral emissions, J. Geophys. Res., 108(A4), 8002, doi:10.1029/2002JA009329.
Dols, V., J.-C. Gérard, J. T. Clarke, J. Gustin, and D. Grodent (2000), Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and GHRS observations, Icarus, 147, 251–266.
Dziczek, D., J. M. Ajello, G. K. James, and D. L. Hansen (2000), Cascade contribution to the H2 Lyman band system from electron impact, Phys. Rev. A, 61, 64,702-1–64,702-4.
Gérard, J.-C., V. Dols, F. Paresce, and R. Prangé (1993), Morphology and time variation of the Jovian far UV aurora: Hubble Space Telescope observations, J. Geophys. Res., 98, 18,793–18,801, doi:10.1029/93JE01334.
Gérard, J.-C., J. Gustin, D. Grodent, P. Delamere, and J. T. Clarke (2002), Excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation, J. Geophys. Res., 107(A11), 1394, doi:10.1029/2002JA009410.
Gérard, J.-C., J. Gustin, D. Grodent, J. T. Clarke, and A. Grard (2003), Spectral observations of transient features in the FUV Jovian polar aurora, J. Geophys. Res., 108, 1319, doi:10.1029/2003JA009901.
Gérard, J.-C., B. Bonfond, J. Gustin, D. Grodent, J. T. Clarke, D. Bisikalo, and V. Shematovich (2009), Altitude of Saturn's aurora and its implications for the characteristic energy of precipitated electrons, Geophys. Res. Lett., 36, L02202, doi:10.1029/2008GL036554.
Gérard, J.-C., J. Gustin, W. R. Pryor, D. Grodent, B. Bonfond, A. Radioti, G. R. Gladstone, J. T. Clarke, and J. D. Nichols (2013), Remote sensing of the energy of auroral electrons in Saturn's atmosphere: Hubble and Cassini spectral observations, Icarus, 223, 211–221, doi:10.1016/j.icarus.2012.11.033.
Gladstone, G. R., M. Allen, and Y. L. Yung (1996), Hydrocarbon photochemistry in the upper atmosphere of Jupiter, Icarus, 119, doi:10.1006/icar.1996.0001.
Gladstone, G. R., et al. (2014), The ultraviolet spectrograph on NASA's Juno mission, Space Sci. Rev., doi:10.1007/s11214-014-0040-z.
Grodent, D. A. (2014), Brief review of ultraviolet auroral emissions on giant planets, Space Sci. Rev., doi:10.1007/s11214-014-0052-8.
Grodent, D., J. H. Waite Jr., and J.-C. Gérard (2001), A self-consistent model of the Jovian auroral thermal structure, J. Geophys. Res., 106(A7), 12,933–12,952, doi:10.1029/2000JA900129.
Grodent, D., J. T. Clarke, J. H. Waite Jr., S. W. H. Cowley, J.-C. Gérard, and J. Kim (2003), Jupiter's polar auroral emissions, J. Geophys. Res., 108(A10), 1366, doi:10.1029/2003JA010017.
Gustin, J., J.-C. Gérard, D. Grodent, S. W. H. Cowley, J. T. Clarke, and A. Grard (2004a), Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations, J. Geophys. Res., 109, A10205, doi:10.1029/2003JA010365.
Gustin, J., et al. (2004b), Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation, Icarus, 171, 336–355, doi:10.1016/j.icarus.2004.06.005.
Gustin, J., J.-C. Gérard, G. R. Gladstone, D. Grodent, and J. T. Clarke (2006), Characteristics of Jovian morning bright FUV aurora from Hubble Space telescope imaging spectrograph imaging spectral observations, J. Geophys. Res., 111, A09220, doi:10.1029/2006JA011730.
Gustin, J., B. Bonfond, D. Grodent, and J.-C. Gérard (2012), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets, J. Geophys. Res., 117, A07316, doi:10.1029/2012JA017607.
Harris, W., J. T. Clarke, M. A. McGrath, and G. E. Ballester (1996), Analysis of Jovian auroral H Ly-α emission (1981–1991), Icarus, 123, 350–365, doi:10.1006/icar.1996.0164.
Hess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent (2011), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi:10.1029/2010JA016262.
Hess, S. L. G., et al. (2013), Evolution of the Io footprint brightness II: Modeling, Planet. Space Sci., 88, 76–85, doi:10.1016/j.pss.2013.08.005.
Hill, T. W. (2001), The Jovian auroral oval, J. Geophys. Res., 106(A5), 8101–8107, doi:10.1029/2000JA000302.
Jones, S. T., and Y.-J. Su (2008), Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube, J. Geophys. Res., 113, A12205, doi:10.1029/2008JA013512.
Kim, Y. H., J. L. Fox, and J. J. Caldwell (1997), Temperatures and altitudes of Jupiter's ultraviolet aurora inferred from GHRS Observations with the Hubble Space Telescope, Icarus, 128, 189–201, doi:10.1006/icar.1997.5699.
Kimble, R. A., et al. (1998), The on-orbit performance of the space telescope imaging spectrograph, Astrophys. J. Lett., 492, L83, doi:10.1086/311102.
Knight, S. (1973), Parallel electric fields, Planet. Space Sci., 21, 741–750, doi:10.1016/0032-0633(73)90093-7.
Lam, H. A., N. Achilleos, S. Miller, J. Tennyson, L. M. Trafton, T. R. Geballe, and G. E. Ballester (1997), A baseline spectroscopic study of the in-frared auroras of Jupiter, Icarus, 127, 379–393, doi:10.1006/icar.1997.5698.
Livengood, T. A., D. F. Strobel, and H. W. Moos (1990), Long-term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora, J. Geophys. Res., 95(A7), 10,375–10,388, doi:10.1029/JA095iA07p10375.
Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite Jr., C. P. Paranicas, and D. J. Williams (2002a), Transient aurora on Jupiter from injections of magnetospheric electrons, Nature, 415, 1003–1005, doi:10.1038/4151003a.
Mauk, B. H., B. J. Anderson, and R. M. Thorne (2002b), Magnetosphere-ionosphere coupling at Earth, Jupiter and beyond, in Atmosphere in the Solar System: Comparative Aeronomy, edited by M. Mendillo, A. Nagy, and J. H. Waite, AGU, Washington, D. C.
Morrissey, P. F., P. D. Feldman, J. T. Clarke, B. C. Wolven, D. F. Strobel, S. T. Durrance, and J. T. Trauger (1997), Simultaneous spectroscopy and imaging of the Jovian aurora with the Hopkins Ultraviolet Telescope and the Hubble Space Telescope, Astrophys. J., 476, 918, doi:10.1086/303648.
Moses, J. I., T. Fouchet, B. Bézard, G. R. Gladstone, E. Lellouch, and H. Feuchtgruber (2005), Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets, J. Geophys. Res., 110, E08001, doi:10.1029/2005JE002411.
Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and K. C. Hansen (2009), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi:10.1029/2009JA014051.
Nichols, J., and S. W. H. Cowley (2004), Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of precipitation induced enhancement of the ionospheric Pedersen conductivity, Ann. Geophys., 22, 1799–1827, doi:10.5194/angeo-22-1799-2004.
Ozak, N., T. E. Cravens, and D. R. Schultz (2013), Auroral ion precipitation at Jupiter: Predictions for Juno, Geophys. Res. Lett., 40, 4144–4148, doi:10.1002/grl.50812.
Parkinson, C. D., A. I. F. Stewart, A. S. Wong, Y. L. Yung, and J. M. Ajello (2006), Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow, J. Geophys. Res., 111, E02002, doi:10.1029/2005JE002539.
Radioti, A., A. T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonfond, N. Krupp, J. Woch, and J. D. Menietti (2009), Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations, Geophys. Res. Lett., 36, L07101, doi:10.1029/2009GL037857.
Ray, L. C., R. E. Ergun, P. A. Delamere, and F. Bagenal (2010), Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport, J. Geophys. Res., 115, A09211, doi:10.1029/2010JA015423.
Ray, L. C., R. E. Ergun, P. A. Delamere, and F. Bagenal (2012), Magnetosphere-ionosphere coupling at Jupiter: A parameter space study, J. Geophys. Res., 117, A01205, doi:10.1029/2011JA016899.
Trafton, L., J.-C. Gérard, G. Munhoven, and J. H. Waite Jr. (1994), High-resolution spectra of Jupiter's northern auroral ultraviolet emission with the Hubble Space Telescope, Astrophys. J., 421, 816–827, doi:10.1086/173694.
Waite, J. H., Jr., et al. (2001), An auroral flare at Jupiter, Nature, 410, 787–789.
Wolven, B. C., and P. D. Feldman (1998), Self-absorption by vibrationally excited H2 in the Astro-2 Hopkins ultraviolet telescope spectrum of the Jovian aurora, Geophys. Res. Lett., 25, 1537–1540, doi:10.1029/98GL01063.
Yung, Y. L., G. R. Gladstone, K. M. Chang, J. M. Ajello, and S. K. Srivastava (1982), H2 fluorescence spectrum from 1200 to 1700 Å by electron impact: Laboratory study and application to Jovian aurora, Astrophys. J., 254, L65–69, doi:10.1086/183757.