[en] The supramolecular assembly of a series of copolymers combining a PEO-rich hydrophilic and fluorinated CO2-philic sequences is analysed by synchrotron small-angle xray scattering (SAXS) in supercritical CO2, as well as in water/CO2 emulsions. These copolymers were designed to have the same molecular weight and composition, and to differ only by their macromolecular architecture. The investigated copolymers have random, block, and palm-tree architectures. Besides, thermo-responsive copolymer is also analysed, having a hydrophilic sequence becoming water-insoluble around 41 °C, i.e. just above the critical point of CO2. At the length scale investigated by SAXS, only the random copolymer appears to self-assemble in pure CO2, in the form of a disordered microgel-like network. The random, block and thermo-responsive copolymers are all able to stabilize water/CO2 emulsions but not the copolymer with the palm-tree architecture, pointing at the importance of macromolecular architecture for the emulsifying properties. A modelling of the SAXS data shows that the block and the thermo-responsive copolymers form spherical micelle-like structures containing about 70 % water and 30 % polymer.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Physics Materials science & engineering
Author, co-author :
Alaimo, David ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Hermida Merino, Daniel; European Synchrotron Radiation Facility
Grignard, Bruno ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Bras, Wim; European Synchrotron Radiation Facility
Jérôme, Christine ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Debuigne, Antoine ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Gommes, Cédric ; Université de Liège - ULiège > Département de chimie appliquée > Département de chimie appliquée
Language :
English
Title :
Small Angle X-ray Scattering Insights into the Architecture-Dependent Emulsifying Properties of Amphiphilic Copolymers in Supercritical Carbon Dioxide
Publication date :
2015
Journal title :
Journal of Physical Chemistry B
ISSN :
1520-6106
eISSN :
1520-5207
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Gever, S.; Schulmeyr, J. Ecological and gentle technology - CO2 Extraction and Its Use in Food Technology. Innovations Food Technol. 2007, 34, 44-46.
Diaz-Reinoso, B.; Moure, A.; Dominguez, H.; Parajo, J. C. Supercritical CO2 Extraction and Purification of Compounds with Antioxidant Activity. J. Agric. Food Chem. 2006, 54 (7), 2441-69.
Mikami, K. Green Reaction Media in Organic Synthesis; Wiley-Blackwell, 2005; pp 125-182.
DeSimone, J. M.; Tumas, W. Green Chemistry Using Liquid and Supercritical Carbon Dioxide, Oxford University Press: Oxford, U.K., 2003; 48-63
Park, E. J.; Richez, A. P.; Birkin, N. A.; Lee, H.; Arrowsmith, N.; Thurecht, K. J.; Howdle, S. M. New Vinyl Ester Copolymers as Stabilizers for Dispersion Polymerization in scCO2. Polymer 2011, 52 (24), 5403-5409.
Galia, A.; Giaconia, A.; Iaia, V.; Filardo, G. Synthesis of Hydrophilic Polymers in Supercritical Carbon Dioxide in the Presence of a Siloxane-Based Macromonomer Surfactant: Heterogeneous Polymerization of 1-Vinyl-2 Pyrrolidone. J. Polym. Sci., Part A: Polym. Chem. 2003, 42 (1), 173-185.
Ma, Z.; Lacroix-Desmazes, P. Dispersion Polymerization of 2-Hydroxyethyl Methacrylate Stabilized by a Hydrophilic/CO2-Philic Poly(ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) (PEO-b-PFDA) Diblock Copolymer in Supercritical Carbon Dioxide. Polymer 2004, 45 (20), 6789-6797.
Shiho, H.; Desimone, J. M. Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Utilizing Random Copolymers Containing a Fluorinated Acrylate for Preparing Micron-Size Polystyrene Particles. J. Polym. Sci., Part A: Polym. Chem. 2000, 38 (7), 1146-1153.
Hsiao, Y.-L.; Maury, E. E.; DeSimone, J. M.; Mawson, S.; Johnston, K. P. Dispersion Polymerization of Methyl Methacrylate Stabilized with Poly(1,1-dihydroperfluorooctyl acrylate) in Supercritical Carbon Dioxide. Macromolecules 1995, 28 (24), 8159-66.
Carson, T.; Lizotte, J.; Desimone, J. M. Dispersion Polymerization of 1-Vinyl-2-pyrrolidone in Supercritical Carbon Dioxide. Macromolecules 2000, 33 (6), 1917-1920.
Shiho, H.; DeSimone, J. M. Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Supercritical Carbon Dioxide. J. Polym. Sci., Part A: Polym. Chem. 2000, 38 (20), 3783-3790.
Psathas, P. A.; Janowiak, M. L.; Garcia-Rubio, L. H.; Johnston, K. P. Formation of Carbon Dioxide in Water Miniemulsions Using the Phase Inversion Temperature Method. Langmuir 2002, 18 (8), 3039-3046.
Lee, C. T., Jr.; Psathas, P. A.; Johnston, K. P.; DeGrazia, J.; Randolph, T. W. Water-in-Carbon Dioxide Emulsions: Formation and Stability. Langmuir 1999, 15 (20), 6781-6791.
Yazdi, A. V.; Beckman, E. J. Design of highly CO2-soluble chelating agents for carbon dioxide extraction of heavy metals. J. Mater Res. 1995, 10 (3), 530-537.
Yazdi, A. V.; Lepilleur, C.; Singley, E. J.; Liu, W.; Adamsky, F. A.; Enick, R. M.; Beckman, E. J. Highly Carbon Dioxide Soluble Surfactants, Dispersants and Chelating Agents. Fluid Phase Equilib. 1996, 117 (1-2), 297-303.
Shiho, H.; DeSimone, J. M. Dispersion Polymerization of Glycidyl Methacrylate in Supercritical Carbon Dioxide. Macromolecules 2001, 34 (5), 1198-1203.
Giles, M. R.; Griffiths, R. M. T.; Aguiar-Ricardo, A.; Silva, M. M. C. G.; Howdle, S. M. Fluorinated Graft Stabilizers for Polymerization in Supercritical Carbon Dioxide: The Effect of Stabilizer Architecture. Macromolecules 2000, 34 (1), 20-25.
Dickson, J. L.; Psathas, P. A.; Salinas, B.; Ortiz-Estrada, C.; Luna-Barcenas, G.; Hwang, H. S.; Lim, K. T.; Johnston, K. P. Formation and Growth of Water-in-CO2 miniemulsions. Langmuir 2003, 19 (12), 4895-4904.
Lepilleur, C.; Beckman, E. J. Dispersion Polymerization of Methyl Methacrylate in Supercritical CO2. Macromolecules 1997, 30 (4), 745-756.
Baran, N.; Deniz, S.; Akguen, M.; Uzun, I. N.; Dincer, S. Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide using Monofunctional Perfluoropolyether and Silicone-Containing Fluoroacrylate Stabilizers. Eur. Polym. J. 2005, 41 (5), 1159-1167.
Shiho, H.; DeSimone, J. M. Dispersion Polymerization of Acrylonitrile in Supercritical Carbon Dioxide. Macromolecules 2000, 33 (5), 1565-1569.
Fulton, J. L.; Pfund, D. M.; McClain, J. B.; Romack, T. J.; Maury, E. E.; Combes, J. R.; Samulski, E. T.; DeSimone, J. M.; Capel, M. Aggregation of Amphiphilic Molecules in Supercritical Carbon Dioxide: A Small Angle X-ray Scattering Study. Langmuir 1995, 11 (11), 4241-9.
Londono, J. D.; Dharmapurikar, R.; Cocharn, H. D.; Wignall, G. D.; McClain, J. B.; Betts, D. E.; Canelas, D. A.; DeSimone, J. M.; Samulski, E. T.; Chillura-Martino, D.; et al. The Morphology of Block Copolymer Micelles in Supercritical Carbon Dioxide by Small-Angle Neutron and X-ray Scattering. J. Appl. Crystallogr. 1997, 30 (5), 690-695.
Liu, L.-Z.; Cheng, Z.; Inomata, K.; Zhou, S.; Chu, B. Synchrotron SAXS and Laser Light Scattering Studies of Aggregation Behavior of Poly(1,1-dihydroperfluorooctyl acrylate-b-vinyl acetate) Diblock Copolymer in Supercritical Carbon Dioxide. Macromolecules 1999, 32 (18), 5836-5845.
Lo Celso, F.; Triolo, A.; Triolo, F.; Donato, D. I.; Steinhart, M.; Kriechbaum, M.; Amenitsch, H.; Triolo, R. Synchrotron SAXS Investigation on Aggregation Phenomena in Supercritical CO2. Eur. Phys. J. E: Soft Matter Biol. Phys. 2002, 8 (3), 311-314.
Triolo, A.; Lo Celso, F.; Triolo, F.; Amenitsch, H.; Steinhart, M.; Thiyagarajan, P.; Wells, S.; DeSimone, J. M.; Triolo, R. Kinetics of Block Copolymer Aggregation in Supercritical CO2. J. Non-Cryst. Solids 2002, 307-310, 725-730.
Liu, J.; Han, B.; Li, G.; Zhang, X.; He, J.; Liu, Z. Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. Langmuir 2001, 17 (26), 8040-8043.
Liu, J.; Zhang, J.; Mu, T.; Han, B.; Li, G.; Wang, J.; Dong, B. An Investigation of Non-fluorous Surfactant Dynol-604 Based Water-in-CO2 Reverse Micelles by Small Angle X-ray Scattering. J. Supercrit. Fluids 2003, 26 (3), 275-280.
Zhang, J.; Han, B.; Liu, J.; Zhang, X.; Yang, G.; He, J.; Liu, Z.; Jiang, T.; Wang, J.; Dong, B. Effect of Compressed CO2 on the Size and Stability of Reverse Micelles. Small-Angle X-ray Scattering and Phase Behavior Study. J. Chem. Phys. 2003, 118 (7), 3329-3333.
Zhang, J.; Han, B.; Zhao, Y.; Li, J.; Yang, G. Switching Micellization of Pluronics in Water by CO2. Chem.-Eur. J. 2011, 17 (15), 4266-4272.
Ganapathy, H. S.; Hwang, H. S.; Lee, M. Y.; Jeong, Y. T.; Gal, Y.-S.; Lim, K. T. Stabilizer Architectures Based on Fluorinated Random and Block Copolymers for the Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Supercritical Carbon Dioxide. J. Mater. Sci. 2008, 43 (7), 2300-2306.
Oh, K. S.; Bae, W.; Kim, H. Dispersion Polymerization of 2-Hydroxyethyl Methacrylate (HEMA) Using Siloxane-Based Surfactant in Supercritical Carbon Dioxide and in Compressed Liquid Dimethyl Ether. Eur. Polym. J. 2008, 44 (2), 415-425.
Alaimo, D.; Beigbeder, A.; Dubois, P.; Broze, G.; Jerome, C.; Grignard, B. Block, Random and Palm-Tree Amphiphilic Fluorinated Copolymers: Controlled Synthesis, Surface Activity and Use as Dispersion Polymerization Stabilizers. Polym. Chem. 2014, 5 (18), 5273-5282.
Lutz, J.-F.; Akdemir, Ö.; Hoth, A. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(NIPAM) Over? J. Am. Chem. Soc. 2006, 128 (40), 13046-13047.
Glinel, K.; Jonas, A. M.; Jouenne, T.; Leprince, J.; Galas, L.; Huck, W. T. S. Antibacterial and Antifouling Polymer Brushes Incorporating Antimicrobial Peptide. Bioconjugate Chem. 2009, 20 (1), 71-77.
Lutz, J.-F.; Hoth, A. Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules 2005, 39 (2), 893-896.
Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013, 42 (17), 7214-7243.
de las Heras Alarcon, C.; Pennadam, S.; Alexander, C. Stimuli Responsive Polymers for Biomedical Applications. Chem. Soc. Rev. 2005, 34 (3), 276-285.
Glatter, O.; Kratky, O., Eds. Small Angle X-ray Scattering; Academic Press: New York, 1982; 515 pp.
Feigin, L. A.; Svergun, D. I. Structure Analysis by Small-Angle Xray and Neutron Scattering; Plenum Press: New York, 1987.
Pedersen, J. S. Analysis of Small-Angle Scattering Data from Colloids and Polymer Solutions: Modeling and Least-Squares Fitting. Adv. Colloid Interface Sci. 1997, 70 (0), 171-210.
Sivia, D. S. Elementary Scattering Theory: For X-ray and Neutron Users; Oxford University Press: Oxford, U.K., 2011.
Gommes, C. J.; Pirard, J.-P.; Goderis, B. Condensation-Induced Decrease of Small-Angle X-ray Scattering Intensity in Gelling Silica Solutions. J. Phys. Chem. C 2010, 114 (41), 17350-17357.
Stryjek, R.; Vera, J. H. PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures. Can. J. Chem. Eng. 1986, 64 (2), 323-333.
Bras, W.; Dolbnya, I. P.; Detollenaere, D.; van Tol, R.; Malfois, M.; Greaves, G. N.; Ryan, A. J.; Heeley, E. Recent Experiments on a Small-Angle/Wide-Angle X-ray Scattering Beam Line at the ESRF. J. Appl. Crystallogr. 2003, 36 (3, Pt. 1), 791-794.
Hermida-Merino, D.; Portale, G.; Fields, P.; Wilson, R.; Bassett, S. P.; Jennings, J.; Dellar, M.; Gommes, C.; Howdle, S. M.; Vrolijk, B. C. M.; et al. A High Pressure Cell for Supercritical CO2 On-line Chemical Reactions Studied with X-ray Techniques. Rev. Sci. Instrum. 2014, 85 (9), No. 093905.
Huang, T. C.; Toraya, H.; Blanton, T. N.; Wu, Y. X-ray Powder Diffraction Analysis of Silver Behenate, a Possible Low-Angle Diffraction Standard. J. Appl. Crystallogr. 1993, 26 (2), 180-184.
Gommes, C. J.; Goderis, B. CONEX, a Program for Angular Calibration and Averaging of Two-Dimensional Powder Scattering Patterns. J. Appl. Crystallogr. 2010, 43 (2), 352-355.
Debye, P. Molecular-Weight Determination by Light Scattering. J. Phys. Colloid Chem. 1947, 51, 18-32.
Nakano, M.; Deguchi, M.; Matsumoto, K.; Matsuoka, H.; Yamaoka, H. Self-Assembly of Poly(1,1-diethylsilabutane)-block-poly-(2-hydroxyethyl methacrylate) Block Copolymer. 1. Micelle Formation and Micelle-Unimer-Reversed Micelle Transition by Solvent Composition. Macromolecules 1999, 32 (22), 7437-7443.
Hammouda, B. A New Guinier-Porod Model. J. Appl. Crystallogr. 2010, 43 (4), 716-719.
De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979.
Billmeyer, F. W., Jr. Textbook of Polymer Science, 3rd ed.; Tokyo Denki University Press: Tokyo, 1989.
Pedersen, J. S.; Gerstenberg, M. C. Scattering Form Factor of Block Copolymer Micelles. Macromolecules 1996, 29 (4), 1363-1365.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.