Article (Scientific journals)
Weighted principal component analysis: a weighted covariance eigendecomposition approach
Delchambre, Ludovic
2014In Monthly Notices of the Royal Astronomical Society, 446 (2), p. 3545-3555
Peer Reviewed verified by ORBi
 

Files


Full Text
paper.pdf
Author postprint (954.71 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
methods: data analysis; quasars: general
Abstract :
[en] We present a new straightforward principal component analysis (PCA) method based on the diagonalization of the weighted variance-covariance matrix through two spectral decomposition methods: power iteration and Rayleigh quotient iteration. This method allows one to retrieve a given number of orthogonal principal components amongst the most meaningful ones for the case of problems with weighted and/or missing data. Principal coefficients are then retrieved by fitting principal components to the data while providing the final decomposition. Tests performed on real and simulated cases show that our method is optimal in the identification of the most significant patterns within data sets. We illustrate the usefulness of this method by assessing its quality on the extrapolation of Sloan Digital Sky Survey quasar spectra from measured wavelengths to shorter and longer wavelengths. Our new algorithm also benefits from a fast and flexible implementation.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Delchambre, Ludovic  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Language :
English
Title :
Weighted principal component analysis: a weighted covariance eigendecomposition approach
Publication date :
2014
Journal title :
Monthly Notices of the Royal Astronomical Society
ISSN :
0035-8711
eISSN :
1365-2966
Publisher :
Blackwell Publishing, Oxford, United Kingdom
Volume :
446
Issue :
2
Pages :
3545-3555
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 15 December 2014

Statistics


Number of views
71 (6 by ULiège)
Number of downloads
896 (3 by ULiège)

Scopus citations®
 
55
Scopus citations®
without self-citations
52
OpenCitations
 
30
OpenAlex citations
 
70

Bibliography


Similar publications



Contact ORBi