[en] The first Raman spectrometers to be used forin situ analysis of planetary material will be launched as part of powerful, rover-based analytical laboratories within the next 6 years. There are a number of significant challenges associated with building spectrometers for space applications, including limited volume, power and mass budgets, the need to operate in harsh environments and the need to operate independently and intelligently for long periods of
time (due to communication limitations). Here, we give an overview of the technical capabilities of the Raman instruments planned for future planetary missions and give a review of the preparatory work being pursued to ensure that such instruments are operated successfully and optimally. This includes analysis of extremophile samples containing pigments associated with biological processes, synthetic materials which incorporate biological material within a mineral matrix, planetary analogues containing low levels of reduced carbon and samples coated with desert varnish that incorporate both geo-markers and biomarkers. We discuss the scientific importance of each sample type and the challenges using portable/flight-prototype instrumentation. We also report on technical development work undertaken to enable the next generation of Raman instruments to reach higher levels of sensitivity and operational efficiency.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Hutchinson, Ian B.; University of Leicester > Department of Physics and Astronomy
Ingley, Richard; University of Leicester > Department of Physics and Astronomy
Edwards, Howell G. M.; University of Leicester > Department of Physics and Astronomy
Harris, Liam V.; University of Leicester > Department of Physics and Astronomy
McHugh, Melissa; University of Leicester > Department of Physics and Astronomy
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Parnell, J.; University of Aberdeen > Department of Geology & Petroleum Geology
Language :
English
Title :
Raman spectroscopy on Mars: identification of geological and bio-geological signatures in Martian analogues using miniaturized Raman spectrometers
Publication date :
2014
Journal title :
Philosophical Transactions. Mathematical, Physical and Engineering Sciences
Morris RV et al. 2000 Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. 105, 1757-1817. (doi:10.1029/1999JE001059)
Squyres SW et al. 2004 In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709-1714. (doi:10.1126/science.1104559)
Hecht MH et al. 2009 Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 64-67. (doi:10.1126/science.1172466)
Blake DF et al. 2013 Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science 341, 1239505. (doi:10.1126/science.1239505)
McLennan SM et al. 2014 Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343, 1244734. (doi:10.1126/science.1244734)
Hassler DM et al. 2014 Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity Rover. Science 343, 1244797. (doi:10.1126/science.1244797)
Christensen PR et al. 2001 Mars global surveyor thermal emission spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23 823-23 871. (doi:10.1029/2000JE001370)
Christensen PR et al. 2003 Morphology and composition of the surface ofMars: Mars Odyssey THEMIS results. Science 300, 2056-2061. (doi:10.1126/science.1080885)
Bibring JP et al. 2006 Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400-404. (doi:10.1126/science.1122659)
Gaillard F, Michalski J, Berger G, McLennan SM, Scaillet B. 2013 Geochemical reservoirs and timing of sulfur cycling onMars. Space Sci. Rev. 174, 251-300. (doi:10.1007/s11214-012-9947-4)
Tosca NJ, Knoll AH, McLennan SM. 2008 Water activity and the challenge for life on early Mars. Science 320, 1204-1207. (doi:10.1126/science.1155432)
Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, Langevin Y. 2011 Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53-60. (doi:10.1038/nature10582)
Bibring JP et al. 2004 Perennial water ice identified in the south polar cap of Mars. Nature 428, 627-630. (doi:10.1038/nature02461)
Plaut JJ et al. 2007 Subsurface radar sounding of the south polar layered deposits of Mars. Science 316, 92-95. (doi:10.1126/science.1139672)
Phillips RJ et al. 2008 Mars north polar deposits: Stratigraphy, age, and geodynamical response. Science 320, 1182-1185. (doi:10.1126/science.1157546)
Maurice S et al. 2012 The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Sci. Rev. 170, 95-166. (doi:10.1007/s11214-012-9912-2)
Wiens RC et al. 2012 The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Sci. Rev. 170, 167-227. (doi:10.1007/s11214-012-9902-4)
Blake D et al. 2012 Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci. Rev. 170, 341-399. (doi:10.1007/s11214-012-9905-1)
Mahaffy PR et al. 2012 The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401-478. (doi:10.1007/s11214-012-9879-z)
Sagan C, Pollack JB. 1974 Differential transmission of sunlight on Mars: Biological implications. Icarus 21, 490-495. (doi:10.1016/0019-1035(74)90151-1)
Hunten DM. 1979 Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol. 14, 71-78. (doi:10.1007/BF01732369)
van Winnendael M, Baglioni P, Vago J. 2005 Development of the ESA ExoMars rover. In Proc. of the 8th Int. Symp. on Artifical Intelligence, Robotics and Automation in Space -iSAIRAS 3.1, Munich Germany, 5-8 September. Paris, France: ESA Publications Division ESTEC.
Cockell CS, Raven JA. 2004 Zones of photosynthetic potential on Mars and the early Earth, Icarus 169, 300-310. (doi:10.1016/j.icarus.2003.12.024)
Schulze-Makuch D, Irwin LN, Lipps JH, LeMone D, Dohm JM, Fairén AG. 2005 Scenarios for the evolution of life on Mars, J. Geophys. Res. 110, E12S23. (doi:10.1029/2005JE002430)
Lopez-Reyes G et al. 2013 Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument. Eur. J. Mineral. 25, 721-733. (doi:10.1127/0935-1221/2013/0025-2317)
Ingley R, Hutchinson IB, Harris LV, McHugh M, Edwards HGM,Waltham NR, Brown P, Pool P. 2014 Competitive and Mature CCD Imaging Systems for Planetary Raman Spectrometers. LPI Contrib 1783, 5066.
Waltham N, Eyles C. 2007 Design, development, and performance of the STEREO SECCHI CCD cameras. In Optical Engineering+ Applications. International Society for Optics and Photonics, San Diego, CA, 26 August. Bellingham,WA: SPIE. (doi:10.1117/12.733835)
Eyles CJ et al. 2009 The Heliospheric Imagers Onboard the STEREO Mission. Solar Phys. 254, 387-445. (doi:10.1007/s11207-008-9299-0)
Edwards HGM, Hutchinson IB, Ingley R, Parnell J, Vítek P, Jehlièka J. 2013 Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars Mission. Astrobiology 13, 543-549. (doi:10.1089/ast.2012.0872)
Mustard JF et al. 2013 Report of the Mars 2020 Science Definition Team. Mars Exploration Program Analysis Group (MEPAG). See http://mepag.jpl.nasa.gov/reports/MEP/Mars-2020-SDT-Report-Final.pdf 154pp.
Wang A. 2013 The detection of biomarkers in salt mixtures by laser Raman spectroscopy. In Geological Society of America, Ann. Meet., Denver, CO, 7-30 October. Boulder, CO: GSA.
Wei J, Wang A, Lambert JL, Wettergreen D, Cabrol NA, Warren-Rhodes K. 2014 Automated Core Sample Analysis by the Mars Microbeam Raman Spectrometer (MMRS) On-Board The Zoë Rover in Atacama: A Terrestrial Test for Mars. In 45th Lunar and Planetary Sci. Conf., The Woodlands, TX, 17-21 March, LPI Contribution No. 1777, p. 2428.
Wang A et al. 2003 Development of the Mars microbeam Raman spectrometer (MMRS). J. Geophys. Res. Planets (1991-2012), 108, E1. (doi:10.1029/2002JE001902)
Wang A. 2012 In Situ Laser Raman Spectroscopy for Mars Sample Return Mission. Lunar Planetary Inst. Sci. Conf. Abstr. 43, 2149.
Angel SM, Gomer NR, Sharma SK,McKay C. 2012 Remote Raman spectroscopy for planetary exploration: A review. Appl. Spectrosc. 66, 137-150. (doi:10.1366/11-06535)
Wang A, Lambert J. 2013 Compact Integrated Raman Spectrometer (CIRS) for in situ phase characterization of during robotic exploration missions on the surface of planetary bodies. In Aerospace Conference, Big Sky, MT, 6-13 March IEEE, pp. 1-7. Piscataway, NJ: IEEE. (doi:10.1109/AERO.2010.5446978)
Edwards HGM, Hutchinson I, Ingley R. 2012 The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal. Bioanal. Chem. 404, 1723-1731. (doi:10.1007/s00216-012-6285-z)
Edwards HGM, Hutchinson IB, Ingley R, Waltham NR, Beardsley S, Dowson S, Woodward S. 2011 The search for signatures of early life on Mars: Raman spectroscopy and the Exomars mission. Spec. Europe 23, P6.
Culka A, Osterrothová K, Hutchinson I, Ingley R, McHugh M, Oren A, Edwards HGM, Jehlička J. 2014 Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis. Phil. Trans. R. Soc. A 372, 20140203. (doi:10.1098/rsta.2014.0203)
Potter RM, Rossmann GR. 1979 The manganese-and iron-oxide mineralogy of desert varnish. Chem. Geol. 25, 79-94. (doi:10.1016/0009-2541(79)90085-8)
Malherbe C. et al. In press. Biogeological analysis of desert varnish using portable Raman spectroscopy.
Andrews DH. 1930 The relation between the Raman spectra and the structure of organic molecules. Phys. Rev. 36, 544-554. (doi:10.1103/PhysRev.36.544)
Rao AM et al. 1997 Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187-191. (doi:10.1126/science.275.5297.187)
Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE. 1997 Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257-259. (doi:10.1038/40827)
Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS. 2001 Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118-1121. (doi:10.1103/PhysRevLett.86.1118)
Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R. 2002 Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043-2061. (doi:10.1016/S0008-6223(02)00066-0)
Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. 2005 Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47-99. (doi:10.1016/j.physrep.2004.10.006)
Dillon RO, Woollam JA, Katkanant V. 1984 Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 29, 3482-3489. (doi:10.1103/PhysRevB.29.3482)
Nemanich RJ, Glass JT, Lucovsky G, Shroder RE. 1988 Raman scattering characterization of carbon bonding in diamond and diamond-like thin films. J. Vac. Sci. Technol. A 6, 1783-1787. (doi:10.1116/1.575297)
TamorMA, Vassell WC. 1994 Raman 'fingerprinting' of amorphous carbon films. J. Appl. Phys. 76, 3823-3830. (doi:10.1063/1.357385)
Ferrari AC, Robertson J. 2001 Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414. (doi:10.1103/PhysRevB.64.075414)
Jehlièka J, Urban O, Pokorný J. 2003 Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim. Acta A 59, 2341-2352. (doi:10.1016/S1386-1425(03)00077-5)
Allwood AC, Walter MR, Marshall CP. 2006 Raman spectroscopy reveals thermal palaeoenvironments of c. 3.5 billion-year-old organic matter. Vib. Spectrosc. 41, 190-197. (doi:10.1016/j.vibspec.2006.02.006)
Marshall CP et al. 2007 Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton. Western Australia. Precambrian Res. 155, 1-23. (doi:10.1016/j.precamres.2006.12.014)
Pasteris JD, Wopenka B. 2003 Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727-738. (doi:10.1089/153110703322736051)
Hutchinson IB, Parnell J, Edwards HGM, Jehlièka J, Marshall CP, Harris LV, Ingley R. In press. Potential for analysis of carbonaceous matter onmars using Raman spectroscopy. Planet. Space Sci. (doi:10.1016/j.pss.2014.07.006)
Parnell J, McMahon S, Blamey NJ, Hutchinson IB, Harris LV, Ingley R, Edwards HGM, Lynch E, Feely M. 2014 Detection of reduced carbon in a basalt analogue for martian nakhlite: A signpost to habitat on Mars. Int. J. Astrobiol. 13, 124-131. (doi:10.1017/S1473550413000360)
Ferrari AC, Robertson J. 2000 Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14 095-14 107. (doi:10.1103/PhysRevB.61.14095)
Vago J,Witasse O, Baglioni P, Haldemann A, Gianfiglio G, Blancquaert T, McCoy D, de Groot R, the ExoMars team. 2013 ExoMars, ESA's next step inMars exploration. ESA Bull. 155, 12-23.
Vago J, Gardini B, Kminek G, Baglioni P, Gianfiglio G, Santovincenzo A, Bayon S, van Winnendael M. 2006 ExoMars: Searching for life on the red planet. ESA Bull. 126, 17-23.
Steele A et al. 2012 A reduced organic carbon component in Martian basalts. Science 337, 212-215. (doi:10.1126/science.1220715)
Pasteris JD,Wopenka B. 2002 Laser-Raman spectroscopy (Communication arising): Images of the Earth's earliest fossils? Nature 420, 476-477. (doi:10.1038/420476b)
Marshall CP, Edwards HGM, Jehlièka J. 2010 Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology 10, 229-243. (doi:10.1089/ast.2009.0344)
Harris LV, Hutchinson IB, Parnell J, Ingley R, Edwards HGM. 2013 Detection of reduced carbon in basalt using Raman spectroscopy: A signpost to habitat on Mars [abstract 756]. In EPSC Abstracts 8. See http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-756.pdf.
Jorge Villar SE, Edwards HGM, Worland MR. 2005 Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Origins Life Evol. Biosph. 35, 489-506. (doi:10.1007/s11084-005-3528-4)
Kohel JM, Kirby JP, Lambert JL. 2010 Development of a compact high-resolution spectrometer for multi-line UV Raman spectroscopy. In Aerospace Conference, 2010 IEEE. Big Sky, MT, 6-13 March, pp. 1-7. Piscataway, NJ: IEEE. (doi:10.1109/AERO.2010.5446978)
Edwards HGM, Hutchinson IB, Ingley R. 2012 Raman spectroscopy and the search for life signatures in the ExoMars Mission. Int. J. Astrobiol. 11, 269-278. (doi:10.1017/S1473550412000201)
Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. 2007 Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7, 631-643. (doi:10.1089/ast.2006.0097)
Jorge Villar SE, Edwards HGM. 2006 Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100-113. (doi:10.1007/s00216-005-0029-2)
V?tek P, Jehlicka J, Edwards HG, Osterrothova K. 2009 Identification of β-carotene in an evaporitic matrix-evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393, 1967-1975. (doi:10.1007/s00216-009-2677-0)
Atanaska A, Velitchkova M. 2005 Resonance Raman spectroscopy of carotenoids in Photosystem I particles. Biophys. Chem. 114, 129-135. (doi:10.1016/j.bpc.2004.11.012)
Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA. 2003 Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 59, 2391-2407. (doi:10.1016/S1386-1425(03)00080-5)
Sharma SK. 2007 New trends in telescopic remote Raman spectroscopic instrumentation. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68, 1008-1022. (doi:10.1016/j.saa.2007.06.047)
Misra AK, Sharma SK, Chio CH, Lucey PG, Lienert B. 2005 Pulsed remote Raman system for daytime measurements of mineral spectra. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 61, 2281-2287. (doi:10.1016/j.saa.2005.02.027)
Europa Study Team. 2012 Europa Study 2012 Report. National Aeronautics and Space Administration.
Sharma SK, Porter JN, Misra AK, Acosta-Maeda TE, Angel SM, McKay CP. 2014 Remote Raman Spectroscopy of Salts and Organics in the Subsurface of Ice -A Potential Instrument for Exploring Europa. Lunar Planetary Inst. Sci. Conf. Abstr. 45, 1678.
Wiens RC, Sharma SK, Thompson J, Misra A, Lucey PG. 2005 Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 61, 2324-2334. (doi:10.1016/j.saa.2005.02.031)
Rull F, Vegas A, Barreiro F. 2011 In-situ Raman-LIBS combined spectroscopy for surface mineral analysis at stand-off distances. Lunar Planetary Inst. Sci. Conf. Abstr. 42, 2275.
Clegg SM et al. 2014 Remote Raman & LIBS Spectroscopy for Future Mars Rover Missions. In 45th Lunar and Planetary Sci. Conf., The Woodlands, TX, 17-21 March. LPI Contribution No. 1777, p. 2463
Cousin A, Forni O, Maurice S, Gasnault O, Fabre C, Sautter V,Wiens RC,Mazoyer J. 2011 Laser induced breakdown spectroscopy library for the Martian environment. Spectrochim. Acta Part B: Atomic Spectrosc. 66, 805-814. (doi:10.1016/j.sab.2011.10.004)