R. Margesin and F. Schinner (eds.), Cold-adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology, Springer-Verlag, Heidelberg, 1999.
J.W. Deming, Psychrophiles and polar regions, Curr. Opin. Microbiol. 5 (2002), pp. 301-309.
R. Margesin, G. Feller, C. Gerday, and N.J. Russell, Cold-adapted microorganisms: adaptation strategies and biotechnological potential, in Encyclopedia of Environmental Microbiology, G. Bitton, ed., John Wiley and Sons, New York, 2002, pp. 871-885.
S. D'Amico, T. Collins, J.C. Marx, G. Feller, and C. Gerday, Psychrophilic microorganisms: challenges for life, EMBO Rep. 7 (2006), pp. 385-389.
C. Gerday and N. Glansdorff (eds.), Physiology and Biochemistry of Extremophiles, ASM Press, Washington, D.C., 2007.
R. Margesin, F. Schinner, J.C. Marx, and C. Gerday (eds.), Psychrophiles, from Biodiversity to Biotechnology, Springer-Verlag, Berlin, Heidelberg, 2008.
D. Gilichinsky, E. Rivkina, C. Bakermans, V. Shcherbakova, L. Petrovskaya, S. Ozerskaya, N. Ivanushkina, G. Kochkina, K. Laurinavichuis, S. Pecheritsina, R. Fattakhova, and J.M. Tiedje, Biodiversity of cryopegs in permafrost, FEMS Microbiol. Ecol. 53 (2005), pp. 117-128.
A. Leigh Mascarelli, Geomicrobiology: Low life, Nature 459 (2009), pp. 770-773.
D. Leary, UNU-IAS Report: Bioprospecting in the Arctic, http://www.ias.unu.edu/ (2008).
D. Lohan and S. Johnston, UNU-IAS Report: Bioprospecting in Antarctica, http://www.ias.unu.edu/ (2005).
H. Hoag, Polar biotech, Nature Biotechnol. 26 (2008), pp. 1204.
N.J. Russell, Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications, Adv. Biochem. Eng. Biotechnol. 61 (1998), pp. 1-21.
R. Margesin and F. Schinner, Biotechnological Applications of Cold-adapted Organisms, Springer-Verlag 1999, Heidelberg (1999).
C. Gerday, M. Aittaleb, M. Bentahier, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M.- A. Meuwis, and G. Feller, Cold-adapted enzymes: from fundamentals to biotechnology, Trends Biotechnol. 18 (2000), pp. 103-107.
D. Allen, A.L. Huston, L.E. Weels, and J.W. Deming, Biotechnological use of psychrophiles, in Encyclopedia of Environmental Microbiology, G. Bitton, ed., John Wiley and Sons, New York, 2002, pp. 1-17.
R. Cavicchioli, K.S. Siddiqui, D. Andrews, and K.R. Sowers, Low-temperature extremophiles and their applications, Curr. Opin. Biotechnol. 13 (2002), pp. 253-261.
J.C. Marx, T. Collins, S. D'Amico, G. Feller, and C. Gerday, Cold-adapted enzymes from marine Antarctic microorganisms, Mar. Biotechnol. (NY) 9 (2007), pp. 293-304.
M. Strocchi, M. Ferrer, K.N. Timmis, and P.N. Golyshin, Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones, Proteomics 6 (2006), pp. 193-206.
S. D'Amico, J.C. Marx, C. Gerday, and G. Feller, Activity-stability relationships in extremophilic enzymes, J. Biol. Chem. 278 (2003), pp. 7891-7896.
G. Feller and C. Gerday, Psychrophilic enzymes: hot topics in cold adaptation, Nat. Rev. Microbiol. 1 (2003), pp. 200-208.
M. Tehei, B. Franzetti, D. Madern, M. Ginzburg, B.Z. Ginzburg, M.T. Giudici-Orticoni, M. Bruschi, and G. Zaccai, Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering, EMBO Rep. 5 (2004), pp. 66-70.
A.O. Smalas, H.K. Leiros, V. Os, and N.P. Willassen, Cold adapted enzymes, Biotechnol. Annu. Rev. 6 (2000), pp. 1-57.
K.S. Siddiqui and R. Cavicchioli, Cold-adapted enzymes, Annu. Rev. Biochem. 75 (2006), pp. 403-433.
S. D'Amico, C. Gerday, and G. Feller, Structural determinants of cold adaptation and stability in a large protein, J. Biol. Chem. 276 (2001), pp. 25791-25796.
S. D'Amico, C. Gerday, and G. Feller, Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alpha-amylase, J. Mol. Biol. 332 (2003), pp. 981-988.
N. Williams, Chill wind over Antarctic biodiversity, Curr. Biol. 14 (2004), pp. R169-170.
C.E. Zobell, Action of Microorganisms on Hydrocarbons, Bacteriol. Rev. 10 (1946), pp. 1-49.
R. Margesin, Alpine microorganisms: useful tools for low-temperature bioremediation, J. Microbiol. 45 (2007), pp. 281-285.
O.G. Brakstad, Natural and stimulated biodegradation of petroleum in permafrost-affacted regions, in Psychrophiles, from Biodiversity to Biotechnology, R. Margesin, F. Schinner, J.C. Marx, and C. Gerday, eds., Springer- Verlag, Berlin, Heidelberg, 2008, pp. 389-407.
D.M. Filler, I. Snape, and D.L. Barnes (eds.), Bioremediation of Petroleum Hydrocarbons in Cold Regions, Cambridge University Press, Cambridge, 2008.
E. Yergeau, M. Arbour, R. Brousseau, D. Juck, J.R. Lawrence, L. Masson, L.G. Whyte, and C.W. Greer, Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments, Appl. Environ. Microbiol. 75 (2009), pp. 6258-6267.
R. Margesin, Bioremediation of petroleum hydrocarbonpolluted soils in extreme temperature environments, in Applied Bioremediation and Phytoremediation, A. Singh and O.P. Ward, eds., Springer-Verlag, Berlin, Heidelberg, 2004, pp. 215-234.
J. Aislabie, D.J. Saul, and J.M. Foght, Bioremediation of hydrocarbon-contaminated polar soils, Extremophiles 10 (2006), pp. 171-179.
D.L. Barnes and E. Chuvilin, Migration of petroleum in permafrost-affected regions, in Permafrost Soils, R. Margesin, ed., Springer-Verlag, Berlin, Heidelberg, 2009, pp. 263-278.
J. Aislabie and J.M. Foght, Hydrocarbon-degrading bacteria in contaminated soils, in Bioremediation of Petroleum Hydrocarbons in Cold Regions, D.M. Filler, I. Snape, and D.L. Barnes, eds., Cambridge University Press, Cambridge, 2008, pp. 69-83.
D.M. Filler, D.R. van Stempvoort, and M.B. Leigh, Remediation of frozen ground contaminants with petroleum hydrocarbons: feasibility and limits, in Permafrost Soils, R. Margesin, ed., Springer-Verlag, Berlin, Heidelberg, 2009, pp. 279-301.
E.J. Thomassin-Lacroix, M. Eriksson, K.J. Reimer, and W.W. Mohn, Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil, Appl. Microbiol. Biotechnol. 59 (2002), pp. 551-556.
K. Paudyn, A. Rutter, R.K. Rowe, and J.S. Poland, Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming, Cold Regions Sci. Tech. 53 (2008), pp. 102-114.
J.L. Walworth and S. Ferguson, Landfarming, in Bioremediation of Petroleum Hydrocarbons in Cold Regions, D.M. Filler, I. Snape, and D.L. Barnes, eds., Cambridge University Press, Cambridge, 2008, pp. 170-189.
D.M. Filler, C.M. Reynolds, I. Snape, A.J. Daugulis, D.L. Barnes, and P.J. Williams, Advances in engineered remediaiton methods for use in the Arctic and Antarctica, Polar Rec. 42 (2006), pp. 111-120.
J.L. Walworth, A. Pond, I. Snape, J. Rayner, S. Ferguson, and P. Harvey, Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil, Cold Regions Sci. Tech. 48 (2007), pp. 84-91.
R.J. Kolenc, W.E. Inniss, B.R. Glick, C.W. Robinson, and C.I. Mayfield, Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium, Appl. Environ. Microbiol. 54 (1988), pp. 638-641.
L. Siani, R. Papa, A. Di Donato, and G. Sannia, Recombinant expression of Toluene o-Xylene Monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, J. Biotechnol. 126 (2006), pp. 334-341.
E. Gratia, F. Weekers, R. Margesin, S. D'Amico, P. Thonart, and G. Feller, Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures, Extremophiles 13 (2009), pp. 763-768.
R. Margesin, P.A. Fonteyne, and B. Redl, Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts, Res. Microbiol. 156 (2005), pp. 68-75.
I. Krallish, S. Gonta, L. Savenkova, P. Bergauer, and R. Margesin, Phenol degradation by immobilized coldadapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora, Extremophiles 10 (2006), pp. 441-449.
H. Zilouei, A. Soares, M. Murto, B. Guieysse, and B. Mattiasson, Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor, Appl. Microbiol. Biotechnol. 72 (2006), pp. 591-599.
G.M. Zaitsev, J.S. Uotila, and M.M. Haggblom, Biodegradation of methyl tert-butyl ether by coldadapted mixed and pure bacterial cultures, Appl. Microbiol. Biotechnol. 74 (2007), pp. 1092-1102.
M.L. Tutino, A. Duilio, R. Parrilli, E. Remaut, G. Sannia, and G. Marino, A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature, Extremophiles 5 (2001), pp. 257-264.
A.M. Cusano, E. Parrilli, A. Duilio, G. Sannia, G. Marino, and M.L. Tutino, Secretion of psychrophilic alpha-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125, FEMS Microbiol. Lett. 258 (2006), pp. 67-71.
R. Papa, V. Rippa, G. Sannia, G. Marino, and A. Duilio, An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125, J. Biotechnol. 127 (2007), pp. 199-210.
E. Parrilli, D. De Vizio, C. Cirulli, and M.L. Tutino, Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature, Microb Cell Fact 7 (2008), doi:10.1186/1475-2859- 7-2
R. Miyake, J. Kawamoto, Y.L. Wei, M. Kitagawa, I. Kato, T. Kurihara, and N. Esaki, Construction of a lowtemperature protein expression system using a coldadapted bacterium, Shewanella sp. strain Ac10, as the host, Appl. Environ. Microbiol. 73 (2007), pp. 4849- 4856.
C. Bakermans, R.E. Sloup, D.G. Zarka, J.M. Tiedje, and M.F. Thomashow, Development and use of genetic system to identify genes required for efficient lowtemperature growth of Psychrobacter arcticus 273-4, Extremophiles 13 (2009), pp. 21-30.
V. Miteva, S. Lantz, and J. Brenchley, Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients, Extremophiles 12 (2008), pp. 441-449.
H. Kobori, C.W. Sullivan, and H. Shizuya, Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end labelling of nucleic acids, Proc. Natl. Acad. Sci. U.S.A. 81 (1984), pp. 6691-6695.
M. Rina, C. Pozidis, K. Mavromatis, M. Tzanodaskalaki, M. Kokkinidis, and V. Bouriotis, Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations, Eur. J. Biochem. 267 (2000), pp. 1230-1238.
E. Wang, D. Koutsioulis, H.K. Leiros, O.A. Andersen, V. Bouriotis, E. Hough, and P. Heikinheimo, Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5, J. Mol. Biol. 366 (2007), pp. 1318-1331.
D. Koutsioulis, E. Wang, M. Tzanodaskalaki, D. Nikiforaki, A. Deli, G. Feller, P. Heikinheimo, and V. Bouriotis, Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase, Protein Eng. Des. Sel. 21 (2008), pp. 319-327.
I. Leiros, E. Moe, O. Lanes, A.O. Smalas, and N.P. Willassen, The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features, Acta Crystallogr. D Biol. Crystallogr. 59 (2003), pp. 1357-1365.
M. Ferrer, T.N. Chernikova, M.M. Yakimov, P.N. Golyshin, and K.N. Timmis, Chaperonins govern growth of Escherichia coli at low temperatures, Nat. Biotechnol. 21 (2003), pp. 1266-1267.
J. Babu, P.W. Ramteke, and G. Thomas, Cold active microbial lipases: some hot issues and recent developments, Biotechnol. Adv. 26 (2008), pp. 457-470.
S. Davail, G. Feller, E. Narinx, and C. Gerday, Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41, J. Biol. Chem. 269 (1994), pp. 17448-17453.
E. Narinx, E. Baise, and C. Gerday, Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold, Protein Eng. 10 (1997), pp. 1271-1279.
T. Collins, M.A. Meuwis, I. Stals, M. Claeyssens, G. Feller, and C. Gerday, A novel family 8 xylanase, functional and physicochemical characterization, J. Biol. Chem. 277 (2002), pp. 35133-35139.
F. Van Petegem, T. Collins, M.A. Meuwis, C. Gerday, G. Feller, and J. Van Beeumen, The structure of a coldadapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site, J. Biol. Chem. 278 (2003), pp. 7531-7539.
T. Collins, M.A. Meuwis, C. Gerday, and G. Feller, Activity, stability and flexibility in glycosidases adapted to extreme thermal environments, J. Mol. Biol. 328 (2003), pp. 419-428.
T. Collins, D. De Vos, A. Hoyoux, S.N. Savvides, C. Gerday, J. Van Beeumen, and G. Feller, Study of the active site residues of a glycoside hydrolase family 8 xylanase, J. Mol. Biol. 354 (2005), pp. 425-435.
D. De Vos, T. Collins, W. Nerinckx, S.N. Savvides, M. Claeyssens, C. Gerday, G. Feller, and J. Van Beeumen, Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4- xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product, Biochemistry 45 (2006), pp. 4797-4807.
T. Collins, A. Hoyoux, A. Dutron, J. Georis, B. Genot, T. Dauvrin, F. Arnaut, C. Gerday, and G. Feller, Use of glycoside hydrolase family 8 xylanases in baking, J. Cereal. Sci. 43 (2006), pp. 79-84.
A. Hoyoux, I. Jennes, P. Dubois, S. Genicot, F. Dubail, J.M. Francois, E. Baise, G. Feller, and C. Gerday, Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis, Appl. Environ. Microbiol. 67 (2001), pp. 1529-1535.
G.L. Fletcher, C.L. Hew, and P.L. Davies, Antifreeze proteins of teleost fishes, Annu. Rev. Physiol. 63 (2001), pp. 359-390.
R. Margesin, G. Neuner, and K.B. Storey, Coldloving microbes, plants, and animals-fundamental and applied aspects, Naturwissenschaften 94 (2007), pp. 77-99.