Galerkin projection; Whitney element; intersection of meshes; electromagnetism
Abstract :
[en] To solve multiphysics problems, weak coupling of finite element calculations can be carried out: the subproblems of which the physical nature differs are solved separately on their own meshes. In this case, Galerkin projection provides useful tool to ensure the transfer of physical fields between different meshes. In terms of implementation, the Galerkin projection system can be either accurately assembled over the intersection of two meshes or approximately integrated over the target mesh. This paper describes and compares these two implementation techniques for the Galerkin projection.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Wang, Zifu; Université de Lille 1 > L2EP
Henneron, Thomas; Université de Lille 1 > L2EP
Dular, Patrick ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Mipo, Jean-Claude; Valeo Electrical Systems
Piriou, Francis; Université de Lille 1 > L2EP
Language :
English
Title :
Comparison of implementation techniques for Galerkin projection between different meshes
Publication date :
May 2014
Journal title :
International Journal of Numerical Modelling
ISSN :
0894-3370
eISSN :
1099-1204
Publisher :
John Wiley & Sons
Special issue title :
The 9th International Symposium on Electric and Magnetic Fields (EMF 2013)
Geuzaine, C., Meys, B., Henrotte, F., Dular, P., Legros, W., A Galerkin projection method for mixed finite elements (1999) IEEE Trans Magn, 35 (3), pp. 1438-1441. , DOI: 10.1109/20.767236
Parent, G., Dular, P., Ducreux, J.P., Piriou, F., Using a Galerkin projection method for coupled problems (2008) IEEE Trans Magn, 44 (6), pp. 830-833
Wang, Z., Henneron, T., Mipo, J.-C., Piriou, F., (2012) Projection des Champs Entre Deux Maillages Par Une Approche Énergétique, , Numélec, Marseille, France, poster presentation
Wang, Z., Henneron, T., Nemitz, N., Mipo, J.-C., Piriou, F., Electromagnetic field projection on finite element overlapping domains (2013) IEEE Trans Magn, 49 (4), pp. 1290-1298. , DOI: 10.1109/TMAG.2012.2227774
Belgacem, F.B., The mortar finite element method with lagrange multipliers (1999) Numer Math, 84, pp. 173-197. , http://dx.doi.org/10.1007/s002110050468, DOI: 10.1007/s002110050468. [Accessed on: 11/14/2013]
Wohlmuth, B.I., A mortar finite element method using dual spaces for the Lagrange multiplier (2000) SIAM J Numer Anal, 38 (3), pp. 989-1012. , DOI: 10.1137/S0036142999350929
Flemisch, B., Maday, Y., Rapetti, F., Wohlmuth, B.I., Coupling scalar and vector potentials on nonmatching grids for eddy currents in a moving conductor (2004) J Comput Appl Math, 168, pp. 191-205. , http://www.sciencedirect.com/science/article/pii/S0377042703009774, DOI: 10.1016/j.cam.2003.05.017. [Accessed on: 11/14/2013]
Antunes, O.J., Bastos, J.P.A., Sadowski, N., Razek, A., Santandrea, L., Bouillault, F., Rapetti, F., Using hierarchic interpolation with mortar element method for electrical machines analysis (2005) IEEE Trans Magn, 41 (5), pp. 1472-1475. , DOI: 10.1109/TMAG.2005.844561
Dular, P., Sabariego, R.V., Da Luz, M.V.F., Kuo-Peng, P., Krahenbuhl, L., Perturbation finite element method for magnetic model refinement of air gaps and leakage fluxes (2009) IEEE Trans Magn, 45 (3), pp. 1400-1403. , DOI: 10.1109/TMAG.2009.2012643
Jiao, X., Heath, M.T., Common-refinement-based data transfer between nonmatching meshes in multiphysics simulations (2004) Int J Numer Methods Eng, 61, pp. 2402-2427
Farrell, P.E., Piggott, M.D., Pain, C.C., Gorman, G.J., Wilson, C.R., Conservative interpolation between unstructured meshes via supermesh construction (2009) Computer Methods in Applied Mechanics and Engineering, 198, pp. 2632-2642. , http://www.sciencedirect.com/science/article/pii/S0045782509001315, DOI: 10.1016/j.cma.2009.03.004. [Accessed on: 11/14/2013]
Bossavit, A., Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism (1988) IEE Proc A, Phys Sci Meas Instrum Manage Educ, Rev, 135 (8), pp. 493-500
Farrell, P.E., Maddison, J.R., Conservative interpolation between volume meshes by local Galerkin projection (2011) Comput Meth Appl Mech Eng, 200, pp. 89-100. , http://www.sciencedirect.com/science/article/pii/S0045782510002276, DOI: 10.1016/j.cma.2010.07.015. [Accessed on: 11/14/2013]
Cyrus, M., Beck, J., Generalized two- and three-dimensional clipping (1978) Comput Graphics, 3 (1), pp. 23-28. , http://www.sciencedirect.com/science/article/pii/0097849378900213, DOI: 10.1016/0097-8493(78)90021-3. [Accessed on: 11/14/2013]
Wohlmuth, B., A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations (2002) M2AN Math Model Numer Anal, 36, pp. 995-1012. , DOI: 10.1137/S0036142999357968
Belgacem, F.B., Buffa, A., Maday, Y., The mortar finite element method for 3D Maxwell equations: First results (2001) SJNAAM, 39 (3), pp. 880-901. , http://dx.doi.org/10.1137/S0036142999357968