Thermometer ions; Ion spectroscopy; Mass Spectrometry
Abstract :
[en] The dissociation of benzylpyridinium “thermometer” ions is widely used
to calibrate the internal energy of ions produced in mass spectrometry. The
fragmentation mechanism is usually believed to yield a benzylium cation, although
recent studies suggest the possibility of a rearrangement leading to the tropylium isomer,
which would compromise the accuracy of energy calibrations. In this study, we used
IRMPD spectroscopy to probe the dissociation pathways of the p-(tert-butyl)-
benzylpyridinium ion. Our results show that the formation of both benzylium and
tropylium products is feasible depending on the activation regime and on the reaction
time scale. Varying the trapping delays in the hexapole gives insight into a rearrangement
mechanism occurring through consecutive reactions with an isomerization from
benzylium to tropylium. Our work provides experimental validations for the established
calibration procedure and highlights the adequacy of IRMPD spectroscopy to
qualitatively resolve gas-phase rearrangement kinetics.
Research Center/Unit :
Giga-Systems Biology and Chemical Biology - ULiège
Disciplines :
Chemistry
Author, co-author :
Morsa, Denis ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Gabelica, Valérie ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Rosu, Frédéric; Université de Liège - ULiège > Département de Chimie (Sciences) > Laboratoire de spectrométrie de masse (LSM)
Oomens, Jos; Radboud Universiteit Nijmegen > Institute for Molecules and Materials > FELIX Laboratory,
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Language :
English
Title :
Dissociation Pathways of Benzylpyridinium “Thermometer” Ions Depend on the Activation Regime: An IRMPD Spectroscopy Study
Publication date :
October 2014
Journal title :
Journal of Physical Chemistry Letters
eISSN :
1948-7185
Publisher :
American Chemical Society, Washington, United States - District of Columbia
FP7 - 226716 - ELISA - European Light Sources Activities - Synchrotrons and Free Electron Lasers
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture CE - Commission Européenne
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Konijnenberg, A.; Butterer, A.; Sobott, F. Native Ion Mobility-Mass Spectrometry and Related Methods in Structural Biology. Biochim. Biophys. Acta 2013, 1834, 1239-56.
Benesch, J. L.; Robinson, C. V. Mass Spectrometry of Macromolecular Assemblies: Preservation and Dissociation. Curr. Opin. Struct. Biol. 2006, 16, 245-51.
Gabelica, V.; De Pauw, E. Internal Energy and Fragmentation of Ions Produced in Electrospray Sources. Mass Spectrom. Rev. 2005, 24, 566-87.
Cooks, R. G.; Ast, T.; Kralj, B.; Kramer, V.; Zigon, D. Internal Energy Distributions Deposited in Doubly and Singly Charged Tungsten Hexa-Carbonyl Ions Generated by Charge Stripping, Electron Impact, And Charge Exchange. J. Am. Soc. Mass Spectrom. 1990, 1, 16-27.
Voyksner, R. D.; Pack, T. Investigation of Collisional-Activation Decomposition Process and Spectra in the Transport Region of an Electrospray Single Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 1991, 5, 263-268.
Derwa, F.; De Pauw, E.; Natalis, P. New Basis for a Method for the Estimation of Secondary Ion Internal Energy Distribution in "Soft" Ionisation Techniques. Org. Mass. Spectrom. 1991, 26, 117-118.
Derwa, F.; De Pauw, E. Evaluation of Internal Energy of Secondary Ions in LSIMS. Spectrosc. Int. J. 1989, 7, 227-232.
Collette, C.; Pauw, E. D. Calibration of the Internal Energy Distribution of Ions Produced by Electrospray. Rapid Commun. Mass Spectrom. 1998, 12, 165-170.
Gabelica, V.; De Pauw, E.; Karas, M. Influence of the Capillary Temperature and the Source Pressure on the Internal Energy Distribution of Electrosprayed Ions. Int. J. Mass Spectrom. 2004, 231, 189-195.
Luo, G.; Marginean, I.; Vertes, A. Internal Energy of Ions Generated by Matrix-Assisted Laser Desorption/Ionization. Anal. Chem. 2002, 74, 6185-6190.
Greisch, J. F.; Gabelica, V.; Remacle, F.; De Pauw, E. Thermometer Ions for Matrix-Enhanced Laser Desorption/Ionization Internal Energy Calibration. Rapid Commun. Mass Spectrom. 2003, 17, 1847-54.
Tang, H.-W.; Ng, K.-M.; Lu, W.; Che, C.-M. Ion Desorption Efficiency and Internal Energy Transfer in Carbon-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry: Desorption Mechanism(s) and the Design of SALDI Substrates. Anal. Chem. 2009, 81, 4720-4729.
Huang, Y.; Yoon, S. H.; Heron, S. R.; Masselon, C. D.; Edgar, J. S.; Turecek, F.; Goodlett, D. R. Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2012, 23, 1062-70.
DeBord, J. D.; Verkhoturov, S. V.; Perez, L. M.; North, S. W.; Hall, M. B.; Schweikert, E. A. Measuring the Internal Energies of Species Emitted from Hypervelocity Nanoprojectile Impacts on Surfaces Using Recalibrated Benzylpyridinium Probe Ions. J. Chem. Phys. 2013, 138, 214301.
Flanigan, P. M. t.; Shi, F.; Perez, J. J.; Karki, S.; Pfeiffer, C.; Schafmeister, C.; Levis, R. J. Determination of Internal Energy Distributions of Laser Electrospray Mass Spectrometry Using Thermometer Ions and Other Biomolecules. J. Am. Soc. Mass Spectrom. 2014, 25, 1572-1582.
Morsa, D.; Gabelica, V.; De Pauw, E. Effective Temperature of Ions in Traveling Wave Ion Mobility Spectrometry. Anal. Chem. 2011, 83, 5775-82.
Hartmanova, L.; Frycak, P.; Soural, M.; Turecek, F.; Havlicek, V.; Lemr, K. Ion Internal Energy, Salt Tolerance and a New Technical Improvement of Desorption Nanoelectrospray. J. Mass Spectrom. 2014, 49, 750-4.
Cook, R. G.; Beynon, J. H.; Caprioli, R. H.; Lester, G. R. Metastable Ions; Elsevier: Amsterdam, 1973.
Zins, E.-L.; Pepe, C.; Rondeau, D.; Rochut, S.; Galland, N.; Tabet, J. C. Theoretical and Experimental Study of Tropylium Formation from Substituted Benzylpyridinium Species. J. Mass Spectrom. 2009, 44, 12-17.
Zins, E.-L.; Rondeau, D.; Karoyan, P.; Fosse, C.; Rochut, S.; Pepe, C. Investigations of the Fragmentation Pathways of Benzylpyridinium Ions under ESI/MS Conditions. J. Mass Spectrom. 2009, 44, 1668-75.
Zins, E.-L.; Pepe, C.; Schroder, D. Methylene-Transfer Reactions of Benzylium/Tropylium Ions with Neutral Toluene Studied by Means of Ion-Trap Mass Spectrometry. Faraday Discuss. 2010, 145, 157-169.
Laskin, J.; Futrell, J. H. Activation of Large Ions in FT-ICR Mass Spectrometry. Mass Spectrom. Rev. 2005, 24, 135-67.
Polfer, N. C.; Oomens, J. Reaction Products in Mass Spectrometry Elucidated with Infrared Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 3804-17.
Valle, J. J.; Eyler, J. R.; Oomens, J.; Moore, D. T.; van der Meer, A. F. G.; von Helden, G.; Meijer, G.; Hendrickson, C. L.; Marshall, A. G.; Blakney, G. T. Free Electron Laser-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Facility for Obtaining Infrared Multiphoton Dissociation Spectra of Gaseous Ions. Rev. Sci. Instrum. 2005, 76, 023103.
Knippels, G.; Mols, R.; van der Meer, A.; Oepts, D.; van Amersfoort, P. Intense Far-Infrared Free-Electron Laser Pulses with a Length of Six Optical Cycles. Phys. Rev. Lett. 1995, 75, 1755-1758.
Oepts, D.; Van Der Meer, A. F. G.; Van Amersfoort, P. W. The Free-Electron-Laser User Facility FELIX. Infrared Phys. Technol. 1995, 36, 297-308.
McLafferty, F. W.; Winkler, J. Gaseous Tropylium, Benzyl, Tolyl, And Norbornadienyl Cations. J. Am. Chem. Soc. 1974, 96, 5182-5189.
McLafferty, F. W.; Bockhoff, F. M. Formation of Benzyl and Tropylium Ions from Gaseous Toluene and Cycloheptatriene Cations. J. Am. Chem. Soc. 1979, 101, 1783-1786.
Seo, J.; Kim, S. J.; Shin, S. K. Energy- And Time-Dependent Branching to Competing Paths in Coupled Unimolecular Dissociations of Chlorotoluene Radical Cations. Bull. Korean Chem. Soc. 2014, 35, 833-838.
Shinly, S. K.; Han, S.-J.; Kim, B. Time-Resolved Photodissociation of p-Bromotoluene Ion As a Probe of Ion Internal Energy. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 345-355.
Choe, J. C. Formation of C7H7+ from Benzyl Chloride and Chlorotoluene Molecular Ions: A Theoretical Study. J. Phys. Chem. A 2008, 112, 6190-6197.
Chiavarino, B.; Crestoni, M. E.; Dopfer, O.; Maitre, P.; Fornarini, S. Benzylium versus Tropylium Ion Dichotomy: Vibrational Spectroscopy of Gaseous C8H9+ Ions. Angew. Chem., Int. Ed. Engl. 2012, 51, 4947-9.
Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Dopfer, O.; Lemaire, J.; Maître, P. IR Spectroscopic Features of Gaseous C7H7O+ Ions: Benzylium versus Tropylium Ion Structures. J. Phys. Chem. A 2006, 110, 9352-9360.
Lagutschenkov, A.; Langer, J.; Berden, G.; Oomens, J.; Dopfer, O. Infrared Spectra of the Protonated Neurotransmitter Histamine: Competition between Imidazolium and Ammonium Isomers in the Gas Phase. Phys. Chem. Chem. Phys. 2011, 13, 15644-56.
Zou, S.; Oomens, J.; Polfer, N. C. Competition between Diketopiperazine and Oxazolone Formation in Water Loss Products from Protonated ArgGly and GlyArg. Int. J. Mass Spectrom. 2012, 316-318, 12-17.
Dey, A.; Fernando, R.; Abeysekera, C.; Homayoon, Z.; Bowman, J. M.; Suits, A. G. Photodissociation Dynamics of Nitromethane and Methyl Nitrite by Infrared Multiphoton Dissociation Imaging with Quasiclassical Trajectory Calculations: Signatures of the Roaming Pathway. J. Chem. Phys. 2014, 140, 054305.
Andersson, M. P.; Uvdal, P. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-Basis Set 6-311+G(d,p). J. Phys. Chem. A 2005, 109, 2937-2941.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.