[en] Complex oxide heterostructures display some of the most chemically abrupt, atomically
precise interfaces, which is advantageous when constructing new interface phases with
emergent properties by juxtaposing incompatible ground states. One might assume that
atomically precise interfaces result from stoichiometric growth. Here we show that the most
precise control is, however, obtained by using deliberate and specific non-stoichiometric
growth conditions. For the precise growth of Srnþ1TinOnþ1 Ruddlesden–Popper (RP) phases,
stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing
with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the
subsurface RP structure. Our results dramatically expand the materials that can be prepared
in epitaxial heterostructures with precise interface control—from just the n¼N end
members (perovskites) to the entire RP homologous series—enabling the exploration of novel
quantum phenomena at a richer variety of oxide interfaces.
Disciplines :
Physics
Author, co-author :
Nie, Y. F.; Cornell University > Department of Materials Science and Engineering
Zhu, Y.; Cornell University > School of Applied and Engineering Physics
Lee, C.-H.; Cornell University > Department of Materials Science and Engineering
Kourkoutis, L. F.; Cornell University > School of Applied and Engineering Physics
Mundy, J. A.; Cornell University > School of Applied and Engineering Physics
Junquera, Javier; Universidad de Cantabria > Departamento de Ciencias de la Tierra y F´ısica de la Materia Condensada
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Baek, D. J.; Cornell University > School of Electrical and Computer Engineering
Sung, S.; Cornell University > School of Applied and Engineering Physics
Xi, X. X.; Temple University > Department of Physics
Shen, K. M.; Cornell University > Department of Physics
Muller, D. A.; Cornell University > School of Applied and Engineering Physics
Schlom, D. G.; Cornell University > Department of Materials Science and Engineering
Balz, D. & Plieth, K. Die Struktur des Kaliumnickelfluorids, K 2NiF4. Z. Elektrochem. 59, 545-551 (1955).
Ruddlesden, S. N. & Popper, P. New compounds of the K 2NiF4 type. Acta Crystallogr. 10, 538-539 (1957).
Ruddlesden, S. N. & Popper, P. The compound Sr3Ti 2O7 and its structure. Acta Crystallogr. 11, 54-55 (1958).
Muller-Buschbaum, H. The crystal chemistry of high-temperature oxide superconductors and materials with related structures. Angew. Chem. Int. Ed. 28, 1472-1493 (1989). (Pubitemid 20040012)
Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141-144 (1996). (Pubitemid 126532776)
Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532-534 (1994). (Pubitemid 24368530)
Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr 2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657-712 (2003). (Pubitemid 36737415)
Callaghan, A., Moeller, C. W. & Ward, R. Magnetic interactions in ternary ruthenium oxides. Inorg. Chem. 5, 1572-1576 (1966).
Shai, D. E. et al. Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic SrRuO3 thin films. Phys. Rev. Lett. 110, 087004 (2013).
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942-1945 (2006). (Pubitemid 44497997)
Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298-302 (2008). (Pubitemid 351430894)
Huijben, M. et al. Defect engineering in oxide heterostructures by enhanced oxygen surface exchange. Adv. Funct. Mater. 23, 5240-5248 (2013).
Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493-496 (2007). (Pubitemid 47143453)
Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196-1199 (2007).
Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487-490 (2009).
Tilley, R. Correlation between dielectric constant and defect structure of non-stoichiometric solids. Nature 269, 229-231 (1977).
Udayakumar, K. R. & Cormack, A. N. Structural aspects of phase equilibria in the strontium-titanium-oxygen system. J. Am. Ceram. Soc. 71, C469-C471 (1988).
Udayakumar, K. & Cormack, A. Non-stoichiometry in alkaline earth excess alkaline earth titanates. J. Phys. Chem. Solids 50, 55-60 (1989).
Dijkkamp, D. et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619-621 (1987).
Koinuma, H. et al. Preparation of superconducting thin films of (La 1-xSrx)yCuO4- d by sputtering. J. Appl. Phys. 62, 1524-1526 (1987).
Lathrop, D. K., Russek, S. E. & Buhrman, R. A. Production of YBa 2Cu3O7-y superconducting thin films in situ by high-pressure reactive evaporation and rapid thermal annealing. Appl. Phys. Lett. 51, 1554-1556 (1987).
Poppe, U. et al. Direct production of crystalline superconducting thin films of YBa2Cu3O7 by high-pressure oxygen sputtering. Solid State Commun. 66, 661-665 (1988). (Pubitemid 18622701)
Sandstrom, R. L. et al. Reliable single-target sputtering process for high-temperature superconducting films and devices. Appl. Phys. Lett. 53, 444-446 (1988).
Spah, R. J., Hess, H. F., Stormer, H. L., White, A. E. & Short, K. T. Parameters for in situ growth of high Tc superconducting thin films using an oxygen plasma source. Appl. Phys. Lett. 53, 441-443 (1988).
Madhavan, S., Schlom, D. G., Dabkowski, A., Dabkowska, H. A. & Liu, Y. Growth of epitaxial a-axis and c-axis oriented Sr2RuO4 films. Appl. Phys. Lett. 68, 559-561 (1996). (Pubitemid 126684435)
Schlom, D. G. et al. Searching for superconductivity in epitaxial films of copper-free layered oxides with the K2NiF4 structure. Proc. SPIE 3481, 226-240 (1998).
Schlom, D. G. et al. Growth of epitaxial films. Supercond. Sci. Technol. 10, 891-895 (1999).
Matsuno, J., Okimoto, Y., Kawasaki, M. & Tokura, Y. Synthesis and electronic structure of epitaxially stabilized Sr2- xLaxVO4 (0
Ohnishi, T. & Takada, K. Epitaxial thin-film growth of SrRuO 3, Sr3Ru2O7, and Sr 2RuO4 from a SrRuO3 target by pulsed laser deposition. Appl. Phys. Express 4, 025501 (2011).
Feenstra, R., Budai, J. D., Christen, D. K. & Kawai, T. Superconductivity in Srn+1CunO2n+1 + d 'infinite layer' films induced by postgrowth annealing. Appl. Phys. Lett. 66, 2283-2285 (1995).
Iwazaki, Y., Suzuki, T., Sekiguchi, S. & Fujimoto, M. Artificial SrTiO3/SrO superlattices by pulsed laser deposition. Jpn J. Appl. Phys. 38, L1443 (1999).
Tanaka, H. & Kawai, T. Artificial construction of SrO/(La, Sr)MnO3 layered perovskite superlattice by laser molecular-beam epitaxy. Appl. Phys. Lett. 76, 3618-3620 (2000).
Schlom, D. G. et al. Molecular beam epitaxy of layered Dy-Ba-Cu-O compounds. Appl. Phys. Lett. 53, 1660-1662 (1988).
Bozovic, I. et al. Atomic-layer engineering of cuprate superconductors. J. Supercond. 7, 187-195 (1994).
Liu, Z., Hanada, T., Sekine, R., Kawai, M. & Koinuma, H. Atomic layer control in Sr-Cu-O artificial lattice growth. Appl. Phys. Lett. 65, 1717-1719 (1994).
Haeni, J. H. et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden-Popper homologous series. Appl. Phys. Lett. 78, 3292-3294 (2001). (Pubitemid 33611542)
Okude, M., Ohtomo, A., Kita, T. & Kawasaki, M. Epitaxial synthesis of Srn+1TinO3n+1 (n= 2-5) Ruddlesden-Popper homologous series by pulsed-laser deposition. Appl. Phys. Express 1, 081201 (2008).
Tian, W. et al. Epitaxial growth and magnetic properties of the first five members of the layered Srn+1RunO3n+1 oxide series. Appl. Phys. Lett. 90, 022507-022507 (2007).
Yan, L. et al. Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition. Angew. Chem. 119, 4623-4626 (2007).
Lee, C.-H. et al. Effect of reduced dimensionality on the optical band gap of SrTiO3. Appl. Phys. Lett. 102, 122901 (2013).
Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532-536 (2013).
Locquet, J.-P., Catana, A., Mächler, E., Gerber, C. & Bednorz, J. G. Block-by-block deposition: A new growth method for complex oxide thin films. Appl. Phys. Lett. 64, 372-374 (1994).
Haeni, J. H., Theis, C. D. & Schlom, D. G. RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385-391 (2000).
Tian, W., Pan, X. Q., Haeni, J. H. & Schlom, D. G. Transmission electron microscopy study of n=1-5 Srn+1TinO 3n+1 epitaxial thin films. J. Mater. Res. 16, 2013-2026 (2011).
Kleibeuker, J. E. et al. Atomically defined rare-earth scandate crystal surfaces. Adv. Funct. Mater. 20, 3490-3496 (2010).
Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920-2922 (1998). (Pubitemid 128674186)
Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).
Yu, Z. et al. Advances in heteroepitaxy of oxides on silicon. Thin Solid Films 462-463, 51-56 (2004).
Fisher, P. et al. Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy. J. Appl. Phys. 103, 013519 (2008).
Lee, C.-H. et al. Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl. Phys. Lett. 102, 082905 (2013).
Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. doi:10.1038/NMAT4039 (2014).
Venkateswaran, U., Strössner, K., Syassen, K., Burns, G. & Shafer, M. W. Pressure dependence of the Raman modes in Sr2TiO 4. Solid State Commun. 64, 1273-1277 (1987). (Pubitemid 18593054)
Loviat, F. et al. The surface layer of cleaved bilayer manganites. Nanotechnology 18, 044020 (2007).
Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4. Science 289, 746-748 (2000). (Pubitemid 30650187)
Junquera, J., Zimmer, M., Ordejón, P. & Ghosez, P. First-principles calculation of the band offset at BaO/BaTiO3 and SrO/SrTiO3. Phys. Rev. B 67, 155327 (2003).
Theis, C. D. & Schlom, D. G. Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J Vac. Sci. Technol. A 14, 2677 (1996).
Voyles, P., Grazul, J. & Muller, D. Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251-273 (2003). (Pubitemid 36835774)
Kirkland, E. J. On the optimum probe in aberration corrected ADF-STEM. Ultramicroscopy 111, 1523-1530 (2011).
Livesey, A. & Smith, G. The determination of depth profiles from angle-dependent XPS using maximum entropy data analysis. J. Electron Spectrosc. 67, 439-461 (1994).
Powell, C. J. & Jablonski, A. NIST Electron Effective-Attenuation- Length Database-Version 1.1 (National Institute of Standards and Technology, Gaithersberg, MD, 2001).
Soler, J. M. et al. The Siesta method for ab initio order-N materials simulations. J. Phys. Condens. Matter 14, 2745-2779 (2002). (Pubitemid 34288362)