[en] The structural, dielectric, dynamical, elastic, piezoelectric and nonlinear
optical (second-order susceptibility and Pockels tensors) properties of Bi2WO6 in
its P21ab ferroelectric ground state are determined using density functional theory.
The calculation of infrared and Raman spectra on single crystal allowed us to
clarify the assignment of experimental phonon modes, considering the good agreement
between the calculated and the experimental Raman spectra obtained on polycrystal.
The calculation of the elastic constants con rms the elastic stability of the crystal
and allow us to estimate the Young and shear moduli of polycrystalline samples.
The piezoelectric constants have signi cant intrinsic values comparable to those of
prototypical ABO3 ferroelectrics. The electro-optic response is strongly dominated by
the ionic contribution of transverse optic modes, yielding sizable Pockels coe cients
around 9 pm/V along the polar direction.
Disciplines :
Physics
Author, co-author :
Djani-Ait, Hania ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Hermet, Patrick ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
First-principles characterization of the P21ab ferroelectric phase of Aurivillius Bi2WO6
Publication date :
2014
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
eISSN :
1932-7455
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
118
Pages :
13514
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Mitchell, R. H. Perovskites: Modern and Ancient; Almaz Press Inc.: Thunder Bay, 2002.
Aurivillius, B. Mixed Bismuth Oxides With Layer Lattices. I. Structure Type of CaCb2Bi2O9. Ark. Kemmi 1949, 1, 463-499.
Y. Li, Y.; Liu, J.; Huang, X.; Li, G. Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres. Cryst. Growth Des. 2007, 7, 1350-1355.
Kim, N.; Vannier, R. N.; Grey, C. P. Detecting Different Oxygen-Ion Jump Pathways in Bi2WO6 With 1-And 2-Dimensional O-17 MAS NMR Spectroscopy. Chem. Mater. 2005, 17, 1952-1958.
Kudo, A.; Hijii, S. H2 and O2 Evolution From Aqueous Solutions on Layered Oxides Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions. Chem. Lett. 1999, 10, 1103-1104.
McDowell, N. A.; Knight, K. S.; Lightfoot, P. Unusual High-Temperature Structural Behaviour in Ferroelectric Bi2WO6. Chem. Eur. J. 2006, 12, 1493-1499.
Djani, H.; Bousquet, E.; Kellou, A.; Ghosez, Ph. First-Principles Study of the Ferroelectric Aurivillius Phase Bi2WO6. Phys. Rev. B 2012, 86, 054107.
Yanovskii, V. K.; Voronkova, V. I. Polymorphism and Properties of Bi2WO6 and Bi2MoO6. Phys. Status Solidi (A) 1986, 93, 57-66.
Maczka, M.; Hanuza, J.; Paraguassu, W.; Souza Filho, A. G.; Freire, P. T. C.; Mendes Filho, J. Phonons in Ferroelectric Bi2WO6: Raman and Infrared Spectra and Lattice Dynamics. Appl. Phys. Lett. 2008, 92, 112911.
Maczka, M.; Macalik, L.; Hermanowicz, K.; Kepinski, L.; Tomaszewski, P. Raman and IR Spectra of the Cation-Deficient Aurivillius Layered Crystal Bi2W2O9. J. Raman Spectrosc. 2010, 41, 1059-1066.
Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; et al. ABINIT: First-Principles Approach to Material and Nanosystem Properties. Comput. Phys. Commun. 2009, 180, 2582-2615.
Gonze, X.; Beuken, J.-M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.-M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; et al. First-Principle Computation of Material Properties: The ABINIT Software Project. Comput. Mater. Sci. 2002, 25, 478-492.
Gonze, X.; Rignanese, G.-M.; Verstraete, M.; Beuken, J.-M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M.; et al. A Brief Introduction to The ABINIT Software Package. Zeit. Kristallogr. 2005, 220, 558-562.
Teter, M. P. Additional Condition For Transferability in Pseudopotentials. Phys. Rev. B 1993, 48, 5031-5041.
Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1979, 13, 5188-5192.
Schlegel, H. B. Optimization of Equilibrium Geometries and Transition States. J. Comput. Chem. 1982, 3, 214-218.
Gonze, X.; Lee, C. Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors and Interatomic Force Constants From Density Functional Perturbation Theory. Phys. Rev. B 1997, 55, 10355-10368.
Veithen, M.; Gonze, X.; Ghosez, Ph. Nonlinear Optical Susceptibilities, Raman Efficiencies and Electro-Optic Tensors From First-Principles Density Functional Perturbation Theory. Phys. Rev. B 2005, 71, 125107.
Veithen, M.; Gonze, X.; Ghosez, Ph. First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides. Phys. Rev. Lett. 2004, 93, 187401.
Hermet, P.; Bantignies, J. L.; Sauvajol, J. L.; Johnson, M. R. Dynamics Charge Tensors and Infrared Spectra of The Crystalline Quaterthiophene Polymorph Phases From First-Principles Calculations. Synth. Met. 2006, 156, 519-524.
Hermet, P.; Gourrier, L.; Bantignies, J.-L.; Ravot, D.; Michel, T.; Deabate, S.; Boulet, P.; Henn, F. Dielectric, Magnetic and Phonon Properties of Nickel Hydroxide. Phys. Rev. B 2011, 84, 235211.
Ghosez, Ph.; Michenaud, J. P.; Gonze, X. Dynamical Atomic Charges: The Case of ABO3 Compounds. Phys. Rev. B 1998, 58, 6224-6240.
Harrison, W. A. Electronic Structure and The Properties of Solids; Freeman: San Fransisco, CA, 1980.
Hermet, P.; Veithen, M.; Ghosez, Ph. First-Principles Calculations of the Nonlinear Optical Susceptibilities and Raman Scattering Spectra of Lithium Niobate. J. Phys.: Condens. Matter 2007, 19, 456202.
Hermet, P.; Veithen, M.; Ghosez, Ph. Raman Scattering Intensities in BaTiO3 and PbTiO3 Prototypical Ferroelectrics From Density Functional Theory. J. Phys.: Condens. Matter 2009, 21, 215901.
Gonze, X.; Ghosez, Ph.; Godby, R. W. Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid to an Electric Field. Phys. Rev. Lett. 1995, 74, 4035-4038.
Levine, Z. H.; Allan, D. C. Linear Optical Response in Silicon and Germanium Including Self-Energy Effects. Phys. Rev. Lett. 1989, 63, 1719-1722.
Wu, X.; Vanderbilt, D.; Hamman, D. R. Systematic Treatment of Displacements, Strains and Electric Fields in Density-Functional Perturbation Theory. Phys. Rev. B 2005, 72, 035105.
Hermet, P.; Goffinet, M.; Kreisel, J.; Ghosez, Ph. Raman and Infrared Spectra of Multiferroic Bismuth Ferrite From First Principles. Phys. Rev. B 2007, 75, 220102(R).
Prosandeev, S. A.; Waghmare, U.; Levin, I.; Maslar, J. First-Order Raman Spectra of ABáAs1/2BáAs1/2O3 Double Perovskites. Phys. Rev. B 2005, 71, 214307.
Caracas, R. Raman Spectra and Lattice Dynamics of Cubic Gauche Nitrogen. J. Chem. Phys. 2007, 127, 144510.
Wallace, D. C. Thermodynamics of Crystals; Wiley: New York, 1972.
Panda, K. B.; Chandran, K. S. R. First Principles Determination of Elastic Constants and Chemical Bonding of Titanium Boride (TiB) on The Basis of Density Functional Theory. Acta Mater. 2006, 54, 1641-1657.
Bellaiche, L.; Vanderbilt, D. Intrinsic Piezoelectric Response in Perovskite Alloys: PMN-PT Versus PZT. Phys. Rev. Lett. 1999, 83, 1347-1350.
Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Gúnter, P.; Garrett, M. H.; Rytz, D.; Zhu, Y.; Wu, X. Dielectric, Elastic, Piezoelectric, Electro-Optic and Elasto-Optic Tensors of BaTiO3 Crystals. Phys. Rev. B 1994, 50, 5941-5949.
Jaffe, B.; Cook, W. R.; Jaffe, H. Piezoelectric Ceramics 3; Academic press Inc.: New york, 1971.
Hughes, J. L. P.; Sipe, J. E. Calculation of Second-Order Optical Response in Semiconductors. Phys. Rev. B 1996, 53, 10751-10763.
Kleinman, D. A. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 1962, 126, 1977-1979.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.