Keywords :
Quantification of physiological parameters for diagnosis and treatment assessment; Identification and validation; Healthcare management, disease control, critical care
Abstract :
[en] Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which is a treatment for cardiac failure. From an engineering point of view, this parameter dictates the cardiovascular system's dynamic behavior. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a method is developed to compute stressed blood volume from preload reduction experiments. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the most sensitive parameters; and (3) adjust only these sensitive parameters. Stressed blood volume was determined sensitive for all datasets, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal mean squared error of 11.77 %. Stressed blood volume has been computed to range between 450 and 963 ml, or 15 to 28 ml/kg, which matches previous independent experiments on pigs, dogs and humans. Consequently, the method proposed in this work provides a simple way to compute total stressed blood volume from usual hemodynamic data.
Disciplines :
Cardiovascular & respiratory systems
Engineering, computing & technology: Multidisciplinary, general & others
Scopus citations®
without self-citations
0