Reference : Model-Based Computation of Total Stressed Blood Volume from a Preload Reduction Experiment
Scientific congresses and symposiums : Unpublished conference/Abstract
Engineering, computing & technology : Multidisciplinary, general & others
Human health sciences : Cardiovascular & respiratory systems
http://hdl.handle.net/2268/172767
Model-Based Computation of Total Stressed Blood Volume from a Preload Reduction Experiment
English
Pironet, Antoine mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles >]
Desaive, Thomas mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles >]
Chase, J. Geoffrey []
MORIMONT, Philippe mailto [Centre Hospitalier Universitaire de Liège - CHU > > Frais communs médecine >]
Dauby, Pierre mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles >]
Aug-2014
No
Yes
International
19th World Congress of the International Federation of Automatic Control
du 24 au 29 août 2014
[en] Quantification of physiological parameters for diagnosis and treatment assessment ; Identification and validation ; Healthcare management, disease control, critical care
[en] Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which is a treatment for cardiac failure. From an engineering point of view, this parameter dictates the cardiovascular system's dynamic behavior. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a method is developed to compute stressed blood volume from preload reduction experiments. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the most sensitive parameters; and (3) adjust only these sensitive parameters. Stressed blood volume was determined sensitive for all datasets, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal mean squared error of 11.77 %. Stressed blood volume has been computed to range between 450 and 963 ml, or 15 to 28 ml/kg, which matches previous independent experiments on pigs, dogs and humans. Consequently, the method proposed in this work provides a simple way to compute total stressed blood volume from usual hemodynamic data.
Researchers
http://hdl.handle.net/2268/172767

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
IFAC_SBV2.pdfAuthor preprint2.01 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.