[RETRACTED] Human bone marrow, umbilical cord or liver mesenchymal stromal cells fail to improve liver function in a model of CCl4-induced liver damage in NOD/SCID/IL-2Ry(null) mice
[en] Background aims. Transplantation is the gold standard procedure for treating acute and chronic end-stage liver diseases. Given the shortage of organs, the development of cellular sources other than human liver is urgent. The main objective of this project was to examine the effect of mesenchymal stromal cell (MSC) (bone marrow, umbilical cord and liver MSCs) intravenous injection on liver regeneration in a model of hepatic damage in NOD/SCID/IL non-obese diabetic/severe
combined immunodeficient/Interleukin-2Rg(null) (NSG) mice. Methods. Mice received 3 intraperitoneal injections of CCl4 Carbon tetrachloride per week for 4 weeks. Forty-eight hours after the last injection of CCl4, mice received 500,000 MSCs or phosphate-buffered saline by intravenous injection. We examined hepatic damage by means of quantitative image analysis
and blood enzyme analysis 24 h, 1 week or 8 weeks after MSC or phosphate-buffered saline injection. We also examined MSC homing by means of real-time polymerase chain reaction of human albumin. Results. We adapted a model of liver injury in immunodeficient mice. In this model, accumulation of collagen in newly formed scar septa was apparent up to 8 weeks after CCl4 treatment. Human albumin DNA was found in all organs tested. However, intravenous MSC injection,
even after CXCR4 C-X-C chemokine receptor type 4 transduction and whatever the origin of MSCs, failed to improve liver damage. Conclusions. In this liver injury model, MSCs were propagated in various tissues, particularly filtering organs. For the treatment of hepatic damage, intravenous administration of moderate doses of MSCs does not appear to be effective. Yet, this adapted liver injury model is appropriate for investigating engraftment of human cells.
Disciplines :
Hematology
Author, co-author :
BRIQUET, Alexandra ; Centre Hospitalier Universitaire de Liège - CHU > Centre d'oncologie
GREGOIRE, Céline ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Comblain, Fanny ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartilage (U.R.O.C.)
Servais, Laurence ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > GIGA-R : Génétique humaine
[RETRACTED] Human bone marrow, umbilical cord or liver mesenchymal stromal cells fail to improve liver function in a model of CCl4-induced liver damage in NOD/SCID/IL-2Ry(null) mice
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-147.
Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008, 371:1579-1586.
Macmillan M.L., Blazar B.R., DeFor T.E., Wagner J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant 2009, 43:447-454.
Burra P., Arcidiacono D., Bizzaro D., Chioato T., Di L.R., Banerjee A., et al. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol 2012, 12:88.
Fouraschen S.M., Pan Q., de Ruiter P.E., Farid W.R., Kazemier G., Kwekkeboom J., et al. Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev 2012, 21:2410-2419.
Francois S., Bensidhoum M., Mouiseddine M., Mazurier C., Allenet B., Semont A., et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006, 24:1020-1029.
Belema-Bedada F., Uchida S., Martire A., Kostin S., Braun T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2008, 2:566-575.
Sackstein R., Merzaban J.S., Cain D.W., Dagia N.M., Spencer J.A., Lin C.P., et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008, 14:181-187.
Barbash I.M., Chouraqui P., Baron J., Feinberg M.S., Etzion S., Tessone A., et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003, 108:863-868.
Kraitchman D.L., Tatsumi M., Gilson W.D., Ishimori T., Kedziorek D., Walczak P., et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005, 112:1451-1461.
Briquet A., Halleux A., Lechanteur C., Beguin Y. Neuropeptides to replace serum in cryopreservation of mesenchymal stromal cells?. Cytotherapy 2013, 15:1385-1394.
Najimi M., Khuu D.N., Lysy P.A., Jazouli N., Abarca J., Sempoux C., et al. Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes?. Cell Transplant 2007, 16:717-728.
Zeddou M., Briquet A., Relic B., Josse C., Malaise M.G., Gothot A., et al. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 2010, 34:693-701.
Briquet A., Dubois S., Bekaert S., Dolhet M., Beguin Y., Gothot A. Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 2010, 95:47-56.
Kesteloot F., Desmouliere A., Leclercq I., Thiry M., Arrese J.E., Prockop D.J., et al. ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice. Hepatology 2007, 46:1620-1631.
Gang E.J., Bosnakovski D., Figueiredo C.A., Visser J.W., Perlingeiro R.C. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007, 109:1743-1751.
Jones E.A., English A., Kinsey S.E., Straszynski L., Emery P., Ponchel F., et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 2006, 70:391-399.
Aldridge V., Garg A., Davies N., Bartlett D.C., Youster J., Beard H., et al. Human mesenchymal stem cells are recruited to injured liver in a beta1-integrin and CD44 dependent manner. Hepatology 2012, 56:1063-1073.
Yan Y., Xu W., Qian H., Si Y., Zhu W., Cao H., et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 2009, 29:356-365.
Manuelpillai U., Tchongue J., Lourensz D., Vaghjiani V., Samuel C.S., Liu A., et al. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl(4)-treated mice. Cell Transplant 2010, 19:1157-1168.
Dominici M., Le B.K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
Gomez-Aristizabal A., Ng C., Ng J., Davies J.E. Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transplant 2012, 18:1384-1394.
Deuse T., Stubbendorff M., Tang-Quan K., Phillips N., Kay M.A., Eiermann T., et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 2011, 20:655-667.
Najar M., Raicevic G., Fayyad-Kazan H., De B.C., Bron D., Toungouz M., et al. Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration. Int Immunopharmacol 2013, 15:693-702.
Zhang S., Chen L., Liu T., Zhang B., Xiang D., Wang Z., et al. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng Part A 2012, 18:1352-1364.
Jin S.Z., Liu B.R., Xu J., Gao F.L., Hu Z.J., Wang X.H., et al. Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury. Hepatobiliary Pancreat Dis Int 2012, 11:66-73.
Kaibori M., Adachi Y., Shimo T., Ishizaki M., Matsui K., Tanaka Y., et al. Stimulation of liver regeneration after hepatectomy in mice by injection of bone marrow mesenchymal stem cells via the portal vein. Transplant Proc 2012, 44:1107-1109.
Kollet O., Shivtiel S., Chen Y.Q., Suriawinata J., Thung S.N., Dabeva M.D., et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. JClin Invest 2003, 112:160-169.