[en] In the last decade proteomics studies have gained increasing importance in plant research. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins have been particularly instrumental to characterize proteomes and their modulation during plant development, biotic and abiotic stresses. Despite important advances, plant proteome analysis, including those of model plant species, remain constrained by limitations inherent to proteomics techniques and data interpretation. Here we review the approaches and achievements of proteomics with model plant and crop species (i.e. Arabidopsis and rice) and discuss the current limitations of crop proteomics. We anticipate future directions that could advance the contribution of plant proteomics to crop improvement.
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408:796-815.
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., et al. The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326:1112-1115.
Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
Xu X., Pan S., Cheng S., Zhang B., Mu D., Ni P., et al. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475:189-195.
The map-based sequence of the rice genome. Nature 2005, 436:793-800.
The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485:635-641.
Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551-556.
Zhang G., Liu X., Quan Z., Cheng S., Xu X., Pan S., et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012, 30:549-554.
Prochnik S., Marri P.R., Desany B., Rabinowicz P.D., Kodira C., Mohiuddin M., et al. The cassava genome: current progress, future directions. Trop Plant Biol 2012, 5:88-94.
Varshney R.K., Nayak S.N., May G.D., Jackson S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 2009, 27:522-530.
Schneeberger K., Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 2011, 16:282-288.
de Godoy L.M., Olsen J.V., Cox J., Nielsen M.L., Hubner N.C., Frohlich F., et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455:1251-1254.
Baerenfaller K., Massonnet C., Walsh S., Baginsky S., Buhlmann P., Hennig L., et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 2012, 8:606.
Ghazalpour A., Bennett B., Petyuk V.A., Orozco L., Hagopian R., Mungrue I.N., et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet 2011, 7:e1001393.
Piques M., Schulze W.X., Hohne M., Usadel B., Gibon Y., Rohwer J., et al. Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 2009, 5:314.
Zenoni S., Ferrarini A., Giacomelli E., Xumerle L., Fasoli M., Malerba G., et al. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 2010, 152:1787-1795.
Yang S.S., Tu Z.J., Cheung F., Xu W.W., Lamb J.F., Jung H.J., et al. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 2011, 12:199.
Zhao Y., Jensen O.N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2009, 9:4632-4641.
Agrawal G.K., Pedreschi R., Barkla B.J., Bindschedler L.V., Cramer R., Sarkar A., et al. Translational plant proteomics: a perspective. J Proteomics 2012, 75:4588-4601.
James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 1997, 30:279-331.
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 2009, 28:93-120.
Rabilloud T., Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 2011, 74:1829-1841.
Komatsu S., Kajiwara H., Hirano H. A rice protein library - a data-file of rice proteins separated by 2-dimensional electrophoresis. Theor Appl Genet 1993, 86:935-942.
Kamo M., Kawakami T., Miyatake N., Tsugita A. Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 1995, 16:423-430.
Schulze W.X., Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 2010, 61:491-516.
Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996, 379:466-469.
Bischof S., Grossmann J., Gruissem W. Proteomics and its application in plant biotechnology. Plant Biotechnology and Agriculture 2012, 55-65. Academic Press, Amsterdam. 1st ed. A. Altman, P.M. Hasegawa (Eds.).
Chevalier F., Rofidal V., Vanova P., Bergoin A., Rossignol M. Proteomic capacity of recent fluorescent dyes for protein staining. Phytochemistry 2004, 65:1499-1506.
Gorg A., Drews O., Luck C., Weiland F., Weiss W. 2-DE with IPGs. Electrophoresis 2009, 30(Suppl. 1):S122-S132.
Giavalisco P., Nordhoff E., Kreitler T., Kloppel K.D., Lehrach H., Klose J., et al. Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005, 5:1902-1913.
Koller A., Washburn M.P., Lange B.M., Andon N.L., Deciu C., Haynes P.A., et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A 2002, 99:11969-11974.
Rabilloud T. The whereabouts of 2D gels in quantitative proteomics. Methods Mol Biol 2012, 893:25-35.
Weiss W., Gorg A. High-resolution two-dimensional electrophoresis. Methods Mol Biol 2009, 564:13-32.
Heinemeyer J., Scheibe B., Schmitz U.K., Braun H.P. Blue native DIGE as a tool for comparative analyses of protein complexes. J Proteomics 2009, 72:539-544.
Friso G., Giacomelli L., Ytterberg A.J., Peltier J.B., Rudella A., Sun Q., et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 2004, 16:478-499.
Kruft V., Eubel H., Jansch L., Werhahn W., Braun H.P. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 2001, 127:1694-1710.
Bae M.S., Cho E.J., Choi E.Y., Park O.K. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 2003, 36:652-663.
Chivasa S., Ndimba B.K., Simon W.J., Robertson D., Yu X.L., Knox J.P., et al. Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 2002, 23:1754-1765.
Gstaiger M., Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 2009, 10:617-627.
Eriksson J., Fenyo D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat Biotechnol 2007, 25:651-655.
Domon B., Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 2010, 28:710-721.
Liu H., Sadygov R.G., Yates J.R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 2004, 76:4193-4201.
Mueller L.N., Rinner O., Schmidt A., Letarte S., Bodenmiller B., Brusniak M.Y., et al. SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 2007, 7:3470-3480.
Neilson K.A., Ali N.A., Muralidharan S., Mirzaei M., Mariani M., Assadourian G., et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 2011, 11:535-553.
Baerenfaller K., Grossmann J., Grobei M.A., Hull R., Hirsch-Hoffmann M., Yalovsky S., et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 2008, 320:938-941.
Lee J., Jiang W., Qiao Y., Cho Y.I., Woo M.O., Chin J.H., et al. Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 2011, 11:455-468.
Kleffmann T., Russenberger D., von Zychlinski A., Christopher W., Sjolander K., Gruissem W., et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 2004, 14:354-362.
Zybailov B., Rutschow H., Friso G., Rudella A., Emanuelsson O., Sun Q., et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008, 3:e1994.
von Zychlinski A., Kleffmann T., Krishnamurthy N., Sjolander K., Baginsky S., Gruissem W. Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 2005, 4:1072-1084.
Ross P.L., Huang Y.L.N., Marchese J.N., Williamson B., Parker K., Hattan S., et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3:1154-1169.
Reiland S., Grossmann J., Baerenfaller K., Gehrig P., Nunes-Nesi A., Fernie A.R., et al. Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.). Proteomics 2011, 11:1751-1763.
Quirino B.F., Candido E.S., Campos P.F., Franco O.L., Kruger R.H. Proteomic approaches to study plant-pathogen interactions. Phytochemistry 2010, 71:351-362.
Dean R.A., Talbot N.J., Ebbole D.J., Farman M.L., Mitchell T.K., Orbach M.J., et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434:980-986.
da Silva A.C., Ferro J.A., Reinach F.C., Farah C.S., Furlan L.R., Quaggio R.B., et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417:459-463.
Buell C.R., Joardar V., Lindeberg M., Selengut J., Paulsen I.T., Gwinn M.L., et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 2003, 100:10181-10186.
Kunkel B.N. A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 1996, 12:63-69.
Konishi H., Ishiguro K., Komatsu S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 2001, 1:1162-1171.
Jones A.M., Thomas V., Bennett M.H., Mansfield J., Grant M. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 2006, 142:1603-1620.
Jones A.M., Bennett M.H., Mansfield J.W., Grant M. Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 2006, 6:4155-4165.
Kaffarnik F.A.R., Jones A.M.E., Rathjen J.P., Peck S.C. Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. Mol Cell Proteomics 2009, 8:145-156.
Casasoli M., Spadoni S., Lilley K.S., Cervone F., De Lorenzo G., Mattei B. Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana. Proteomics 2008, 8:1042-1054.
Nuhse T.S., Bottrill A.R., Jones A.M., Peck S.C. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 2007, 51:931-940.
Benschop J.J., Mohammed S., O'Flaherty M., Heck A.J., Slijper M., Menke F.L. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 2007, 6:1198-1214.
Mithoe S.C., Boersema P.J., Berke L., Snel B., Heck A.J., Menke F.L. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. J Proteome Res 2012, 11:438-448.
Romero-Puertas M.C., Campostrini N., Matte A., Righetti P.G., Perazzolli M., Zolla L., et al. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 2008, 8:1459-1469.
Cecconi D., Orzetti S., Vandelle E., Rinalducci S., Zolla L., Delledonne M. Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 2009, 30:2460-2468.
Widjaja I., Naumann K., Roth U., Wolf N., Mackey D., Dangl J.L., et al. Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 2009, 9:138-147.
Elmore J.M., Liu J., Smith B., Phinney B., Coaker G. Quantitative proteomics reveals dynamic changes in the plasma membrane proteome during Arabidopsis immune signaling. Mol Cell Proteomics 2012, 11(4). M111 014555.
Chen F., Yuan Y., Li Q., He Z. Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 2007, 7:1529-1539.
Mahmood T., Jan A., Kakishima M., Komatsu S. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 2006, 6:6053-6065.
Mukherjee A.K., Carp M.J., Zuchman R., Ziv T., Horwitz B.A., Gepstein S. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 2010, 73:709-720.
Liao M., Li Y., Wang Z. Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 2009, 9:2809-2819.
Kim S.G., Wang Y., Lee K.H., Park Z.Y., Park J., Wu J., et al. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 2013, 78:58-71.
Shah P., Gutierrez-Sanchez G., Orlando R., Bergmann C. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 2009, 9:3126-3135.
Jung Y.H., Jeong S.H., Kim S.H., Singh R., Lee J.E., Cho Y.S., et al. Secretome analysis of Magnaporthe oryzae using in vitro systems. Proteomics 2012, 12:878-900.
Ventelon-Debout M., Delalande F., Brizard J.P., Diemer H., Van Dorsselaer A., Brugidou C. Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 2004, 4:216-225.
Brizard J.P., Carapito C., Delalande F., Van Dorsselaer A., Brugidou C. Proteome analysis of plant-virus interactome: comprehensive data for virus multiplication inside their hosts. Mol Cell Proteomics 2006, 5:2279-2297.
Goodin M.M., Zaitlin D., Naidu R.A., Lommel S.A. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 2008, 21:1015-1026.
Di Carli M., Benvenuto E., Donini M. Recent insights into plant-virus interactions through proteomic analysis. J Proteome Res 2012, 11:4765-4780.
Di Carli M., Villani M.E., Bianco L., Lombardi R., Perrotta G., Benvenuto E., et al. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 2010, 9:5684-5697.
Skirycz A., Vandenbroucke K., Clauw P., Maleux K., De Meyer B., Dhondt S., et al. Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 2011, 29:212-214.
Kosova K., Vitamvas P., Prasil I.T., Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 2011, 74:1301-1322.
Inan G., Zhang Q., Li P., Wang Z., Cao Z., Zhang H., et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 2004, 135:1718-1737.
Neilson K.A., Mariani M., Haynes P.A. Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 2011, 11:1696-1706.
Mirzaei M., Pascovici D., Atwell B.J., Haynes P.A. Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery. Proteomics 2012, 12:864-877.
Mirzaei M., Soltani N., Sarhadi E., Pascovici D., Keighley T., Salekdeh G.H., et al. Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 2012, 11:348-358.
Hossain Z., Nouri M.Z., Komatsu S. Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 2012, 11:37-48.
Choudhary M.K., Basu D., Datta A., Chakraborty N., Chakraborty S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 2009, 8:1579-1598.
Gammulla C.G., Pascovici D., Atwell B.J., Haynes P.A. Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress. Proteomics 2011, 11:2839-2850.
Gammulla C.G., Pascovici D., Atwell B.J., Haynes P.A. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 2010, 10:3001-3019.
Schulze W.X., Schneider T., Starck S., Martinoia E., Trentmann O. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 2012, 69:529-541.
Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2002, 2:1131-1145.
Koussevitzky S., Suzuki N., Huntington S., Armijo L., Sha W., Cortes D., et al. Ascorbate peroxidase 1 plays a key role in the response of arabidopsis thaliana to stress combination. J Biol Chem 2008, 283:34197-34203.
Pang Q., Chen S., Dai S., Chen Y., Wang Y., Yan X. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 2010, 9:2584-2599.
Liu C.W., Hsu Y.K., Cheng Y.H., Yen H.C., Wu Y.P., Wang C.S., et al. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 2012, 26:1649-1660.
Takac T., Pechan T., Samaj J. Differential proteomics of plant development. J Proteomics 2011, 74:577-588.
Kaufmann K., Smaczniak C., de Vries S., Angenent G.C., Karlova R. Proteomics insights into plant signaling and development. Proteomics 2011, 11:744-755.
Chitteti B.R., Peng Z. Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 2007, 7:1473-1500.
Chitteti B.R., Tan F., Mujahid H., Magee B.G., Bridges S.M., Peng Z. Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics 2008, 8:4303-4316.
Nozu Y., Tsugita A., Kamijo K. Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics 2006, 6:3665-3670.
Yang P., Liang Y., Shen S., Kuang T. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics 2006, 6:3330-3338.
Yang P., Li X., Wang X., Chen H., Chen F., Shen S. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 2007, 7:3358-3368.
Grobei M.A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., et al. Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 2009, 19:1786-1800.
Rajjou L., Lovigny Y., Groot S.P., Belghazi M., Job C., Job D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 2008, 148:620-641.
Sugiyama N., Nakagami H., Mochida K., Daudi A., Tomita M., Shirasu K., et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 2008, 4:193.
Aki T., Shigyo M., Nakano R., Yoneyama T., Yanagisawa S. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 2008, 49:767-790.
Reiland S., Messerli G., Baerenfaller K., Gerrits B., Endler A., Grossmann J., et al. Large-scale arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 2009, 150:889-903.
Xu S.B., Li T., Deng Z.Y., Chong K., Xue Y.B., Wang T. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 2008, 148:908-925.
Hajduch M., Hearne L.B., Miernyk J.A., Casteel J.E., Joshi T., Agrawal G.K., et al. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 2010, 152:2078-2087.
Petricka J.J., Schauer M.A., Megraw M., Breakfield N.W., Thompson J.W., Georgiev S., et al. The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 2012, 109:6811-6818.
Van Leene J., Stals H., Eeckhout D., Persiau G., Van De Slijke E., Van Isterdael G., et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 2007, 6:1226-1238.
Chang I.F., Curran A., Woolsey R., Quilici D., Cushman J.C., Mittler R., et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 2009, 9:2967-2985.
Salekdeh G.H., Komatsu S. Crop proteomics: Aim at sustainable agriculture of tomorrow. Proteomics 2007, 7:2976-2996.
Agrawal G.K., Sarkar A., Righetti P.G., Pedreschi R., Carpentier S., Wang T., et al. A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrom Rev 2013, (in press). 10.1002/mas.21365.
Cooper B., Campbell K.B., Feng J., Garrett W.M., Frederick R. Nuclear proteomic changes linked to soybean rust resistance. Mol Biosyst 2011, 7:773-783.
Owiti J., Grossmann J., Gehrig P., Dessimoz C., Laloi C., Hansen M.B., et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J 2011, 67:145-156.
Yang Q.S., Wu J.H., Li C.Y., Wei Y.R., Sheng O., Hu C.H., et al. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Mol Cell Proteomics 2012, 11:1853-1869.
Esteve C., D'Amato A., Marina M.L., Garcia M.C., Righetti P.G. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries. Electrophoresis 2013, 34:207-214.
Esteve C., D'Amato A., Marina M.L., Garcia M.C., Righetti P.G. Identification of avocado (Persea americana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries. Electrophoresis 2012, 33:2799-2805.
Lee J., Feng J., Campbell K.B., Scheffler B.E., Garrett W.M., Thibivilliers S., et al. Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Mol Cell Proteomics 2009, 8:19-31.
Sghaier-Hammami B., Saidi M.N., Castillejo M.A., Jorrin-Novo J.V., Namsi A., Drira N., et al. Proteomics analysis of date palm leaves affected at three characteristic stages of brittle leaf disease. Planta 2012, 236:1599-1613.
Yang Y., Qiang X., Owsiany K., Zhang S., Thannhauser T.W., Li L. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Proteome Res 2011, 10:4647-4660.
Gao L., Wang A., Li X., Dong K., Wang K., Appels R., et al. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). J Proteomics 2009, 73:279-296.
Friso G., Majeran W., Huang M., Sun Q., van Wijk K.J. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 2010, 152:1219-1250.
Rampitsch C., Bykova N.V. Proteomics and plant disease: advances in combating a major threat to the global food supply. Proteomics 2012, 12:673-690.
Abdalla K.O., Rafudeen M.S. Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteomics 2012, 75:2361-2374.
Li X., Islam S., Yang H., Ma W., Yan G. Identification of chromosome regions controlling seed storage proteins of narrow-leafed lupin (Lupinus angustifolius). J Plant Res 2012, 126(3):395-401.
Yahata E., Maruyama-Funatsuki W., Nishio Z., Tabiki T., Takata K., Yamamoto Y., et al. Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics 2005, 5:3942-3953.
Abdi N., Holford P., McGlasson B. Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stonefruit. Postharvest Biol Tec 2002, 26:1-13.
Bendixen E., Danielsen M., Hollung K., Gianazza E., Miller I. Farm animal proteomics-a review. J Proteomics 2011, 74:282-293.
Roncada P., Piras C., Soggiu A., Turk R., Urbani A., Bonizzi L. Farm animal milk proteomics. J Proteomics 2012, 75:4259-4274.
D'Alessandro A., Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013, 78:558-577.
Carpentier S.C., Panis B., Vertommen A., Swennen R., Sergeant K., Renaut J., et al. Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 2008, 27:354-377.
Varshney R.K., Close T.J., Singh N.K., Hoisington D.A., Cook D.R. Orphan legume crops enter the genomics era!. Curr Opin Plant Biol 2009, 12:202-210.
Liang C., Tian J., Liao H. Proteomics dissection of plant responses to mineral nutrient deficiency. Proteomics 2012, 13(3-4):624-636.
Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., et al. Mechanisms of plant salt response: insights from proteomics. J Proteome Res 2012, 11:49-67.
Visioli G., Marmiroli N. The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 2012, 79C:133-145.
Komatsu S., Hiraga S., Yanagawa Y. Proteomics techniques for the development of flood tolerant crops. J Proteome Res 2012, 11:68-78.
Palma J.M., Corpas F.J., del Rio L.A. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 2011, 74:1230-1243.
Pechanova O., Takac T., Samaj J., Pechan T. Maize proteomics: an insight to biology of important cereal crop. Proteomics 2013, 13(3-4):637-662.
Agrawal G.K., Rakwal R. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 2011, 11:1630-1649.
Joshi H.J., Christiansen K.M., Fitz J., Cao J., Lipzen A., Martin J., et al. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinformatics 2012, 28:1303-1306.
Hirsch-Hoffmann M., Gruissem W., Baerenfaller K. pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Front. Plant Sci 2012, 3:123.
Joshi H.J., Hirsch-Hoffmann M., Baerenfaller K., Gruissem W., Baginsky S., Schmidt R., et al. MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 2011, 155:259-270.
Helmy M., Tomita M., Ishihama Y. OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 2011, 11:63.
Mann G.W., Joshi H.J., Petzold C.J., Heazlewood J.L. Proteome coverage of the model plant Arabidopsis thaliana: Implications for shotgun proteomic studies. J Proteomics 2012, 79C:195-199.
Yandell M., Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet 2012, 13:329-342.
Bennetzen J.L., Coleman C., Liu R., Ma J., Ramakrishna W. Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 2004, 7:732-736.
Grossmann J., Fischer B., Baerenfaller K., Owiti J., Buhmann J.M., Gruissem W., et al. A workflow to increase the detection rate of proteins from unsequenced organisms in high-throughput proteomics experiments. Proteomics 2007, 7:4245-4254.
Vertommen A., Moller A.L., Cordewener J.H., Swennen R., Panis B., Finnie C., et al. A workflow for peptide-based proteomics in a poorly sequenced plant: A case study on the plasma membrane proteome of banana. J Proteomics 2011, 74(8):1218-1229.
Adams K.L., Wendel J.F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol 2005, 8:135-141.
Jackson S.A., Iwata A., Lee S.H., Schmutz J., Shoemaker R. Sequencing crop genomes: approaches and applications. New Phytol 2011, 191:915-925.
Claassen M. Inference and validation of protein identifications. Mol Cell Proteomics 2012, 11:1097-1104.
Hoehenwarter W., Larhlimi A., Hummel J., Egelhofer V., Selbig J., van Dongen J.T., et al. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber. J Proteome Res 2011, 10:2979-2991.
Hu G., Houston N.L., Pathak D., Schmidt L., Thelen J.J., Wendel J.F. Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 2011, 189:1103-1115.
Ng D.W., Zhang C., Miller M., Shen Z., Briggs S.P., Chen Z.J. Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity (Edinb) 2012, 108:419-430.
Koh J., Chen S., Zhu N., Yu F., Soltis P.S., Soltis D.E. Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. New Phytol 2012, 196:292-305.
Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25.
Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323.
Boschetti E., Bindschedler L.V., Tang C., Fasoli E., Righetti P.G. Combinatorial peptide ligand libraries and plant proteomics: a winning strategy at a price. J Chromatogr A 2009, 1216:1215-1222.
Frohlich A., Gaupels F., Sarioglu H., Holzmeister C., Spannagl M., Durner J., et al. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol 2012, 159:902-914.
Lange V., Picotti P., Domon B., Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4:222.
Rampitsch C., Bykova N.V. The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Front Plant Sci. 2012, 3:144.
Xing S., Poirier Y. The protein acetylome and the regulation of metabolism. Trends Plant Sci 2012, 17:423-430.
Mischerikow N., Heck A.J. Targeted large-scale analysis of protein acetylation. Proteomics 2011, 11:571-589.
Liu Y., He Z., Appels R., Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet 2012, 125:1-10.
Collard B.C., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2008, 363:557-572.
Tester M., Langridge P. Breeding technologies to increase crop production in a changing world. Science 2010, 327:818-822.
Majeran W., Friso G., Ponnala L., Connolly B., Huang M., Reidel E., et al. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 2010, 22:3509-3542.
Huang M., Friso G., Nishimura K., Qu X., Olinares P.D., Majeran W., et al. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J Proteome Res 2013, 12:491-504.
Koornneef M., Meinke D. The development of Arabidopsis as a model plant. Plant J 2010, 61:909-921.
Wienkoop S., Baginsky S., Weckwerth W. Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 2010, 73:2239-2248.
Kimura S., Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. CSH Protoc 2008, [pdb emo105].
Abelenda J.A., Navarro C., Prat S. From the model to the crop: genes controlling tuber formation in potato. Curr Opin Biotechnol 2011, 22:287-292.
Lata C., Gupta S., Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 2012, 10.3109/07388551.2012.716809.
Brutnell T.P., Wang L., Swartwood K., Goldschmidt A., Jackson D., Zhu X.G., et al. Setaria viridis: a model for C4 photosynthesis. Plant Cell 2010, 22:2537-2544.
Stacey G., Libault M., Brechenmacher L., Wan J., May G.D. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 2006, 9:110-121.
Talano M.A., Cejas R.B., Gonzalez P.S., Agostini E. Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. Plant Physiol Biochem 2012, 63C:8-14.
Kottapalli K.R., Rakwal R., Shibato J., Burow G., Tissue D., Burke J., et al. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant Cell Environ 2009, 32:380-407.
Bhushan D., Jaiswal D.K., Ray D., Basu D., Datta A., Chakraborty S., et al. Dehydration-responsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. J Proteome Res 2011, 10:2027-2046.
Hajheidari M., Eivazi A., Buchanan B.B., Wong J.H., Majidi I., Salekdeh G.H. Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 2007, 6:1451-1460.
Benesova M., Hola D., Fischer L., Jedelsky P.L., Hnilicka F., Wilhelmova N., et al. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?. PLoS One 2012, 7:e38017.
Ji K., Wang Y., Sun W., Lou Q., Mei H., Shen S., et al. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 2012, 169:336-344.
Heazlewood J.L. The green proteome: challenges in plant proteomics. Front Plant Sci 2011, 2:6.
Wienkoop S., Zoeller D., Ebert B., Simon-Rosin U., Fisahn J., Glinski M., et al. Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 2004, 65:1641-1649.
Ebert B., Melle C., Lieckfeldt E., Zoller D., von Eggeling F., Fisahn J. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology. J Plant Physiol 2008, 165:1227-1237.
Kaspar S., Matros A., Mock H.P. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J Proteome Res 2010, 9:2402-2411.
Dembinsky D., Woll K., Saleem M., Liu Y., Fu Y., Borsuk L.A., et al. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 2007, 145:575-588.
Kaspar S., Weier D., Weschke W., Mock H.P., Matros A. Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains. Anal Bioanal Chem 2010, 398:2883-2893.
Gibon Y., Blaesing O.E., Hannemann J., Carillo P., Hohne M., Hendriks J.H., et al. A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 2004, 16:3304-3325.
Sulpice R., Trenkamp S., Steinfath M., Usadel B., Gibon Y., Witucka-Wall H., et al. Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell 2010, 22:2872-2893.
Salisbury C.M., Maly D.J., Ellman J.A. Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc 2002, 124:14868-14870.
Houseman B.T., Huh J.H., Kron S.J., Mrksich M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 2002, 20:270-274.
Sun Q., Zybailov B., Majeran W., Friso G., Olinares P.D., van Wijk K.J. PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 2009, 37:D969-D974.
Agrawal G.K., Sarkar A., Agrawal R., Ndimba B.K., Tanou G., Dunn M.J., et al. Boosting the globalization of plant proteomics through INPPO: current developments and future prospects. Proteomics 2012, 12:359-368.