Patino Llorente, Jairo ; Université de Liège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Shaw, A.J.
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Davis, C. C., & Schaefer, H. Plant evolution: pulses of extinction and speciation in gymnosperm diversity. Curr. Biol. 21, 995-998 (2011).
Nagalingum, N. S. et al. Recent synchronous radiation of a living fossil. Science 334, 796-799 (2011).
Niklas, K. J., Tiffney, B. H., & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614-616 (1983).
Kenrick, P., & Crane, P. R. The Origin and Early Diversification of Land Plants: a Cladistic Study (Smithsonian Institution Press, 1997).
Smith, S. A., Beaulieu, J. M., & Donoghue, M. J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl Acad. Sci. USA 107, 5897-5902 (2010).
Magallón, S., & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349-365 (2009).
Fiz-Palacios, O., Schneider, H., Heinrichs, J., & Savolainen, V. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol. Biol. 11, 341 (2011).
Crepet, W. L., & Niklas, K. J. Darwin's second abominable mystery: why are there so many angiosperm species? Am. J. Bot. 96, 366-381 (2009).
Friis, E. M., Pedersen, K. R., & Crane, P. R. Diversity in obscurity: fossil flowers and the early history of angiosperms. Phil. Trans. R. Soc. B 365, 369-382 (2010).
Shaw, A. J., Szövényi, P., & Shaw, B. Bryophyte diversity and evolution: windows into the early evolution of land plants. Am. J. Bot. 98, 352-369 (2011).
Heinrichs, J. et al. Kaolakia borealis nov. gen. et sp. (Porellales, Jungermanniopsida): a leafy liverwort from the Cretaceous of Alaska. Rev. Palaeobot. Palynol. 165, 235-240 (2011).
Moisan, P., Voigt, S., Schneider, J. W., & Kerp, H. New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Rev. Palaeobot. Palynol. 187, 29-37 (2012).
Frahm, J.-P., & Newton, A. E. A new contribution to the moss flora of Dominican amber. Bryologist 108, 526-536 (2005).
Hernick, L. V., Landing, E., & Bartowski, K. E. Earth's oldest liverworts-Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Giventian) of eastern New York, USA. Rev. Palaeobot. Palynol. 148, 154-162 (2008).
Stenøien, H. K. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants. J. Evol. Biol. 21, 566-571 (2008).
Edwards, D., Morris, J. L., Richardson, J. B., & Kenrick, P. Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytol. 202, 50-78 (2014).
Shaw, A. J., Cox, C. J., Goffinet, B., Buck, W. R., & Boles, S. B. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution 57, 2226-2241 (2003).
Newton, A. E., Wikström, N., Bell, N., Forrest, L., & Ignatov, M. S. in Pleurocarpous Mosses: Systematics and Evolution. (eds Newton, A. E., & Tangney, R. S.) 337-366 (Taylor and Francis, 2006).
Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S. R., & Schneider, H. Steady diversification of derived liverworts under tertiary climatic fluctuations. Biol. Lett. 3, 566-569 (2007).
Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553-557 (2004).
Schuettpelz, E., & Pryer, K. M. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc. Natl Acad. Sci. USA 106, 11200-11205 (2009).
Magallón, S., & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762-1780 (2001).
Givnish, T. J. Ecology of plant speciation. Taxon 59, 1326-1366 (2010).
Vanderpoorten, A. et al. in The biology of island floras. (eds Bramwell, D., & Caujapé-Castells, J.) 338-364 (Cambridge University Press, 2011).
Patiño, J. et al. The anagenetic world of the spore-producing plants. New Phytol. 201, 305-311 (2014).
Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 6, 1816-1824 (2010).
Dornburg, A., Beaulieu, J. M., Oliver, J. C., & Near, T. J. Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst. Biol. 60, 519-527 (2011).
Leslie, A. B. et al. Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl Acad. Sci USA 109, 16217-16221 (2012).
Saito, R. et al. A terrestrial vegetation turnover in the middle of the early Triassic. Global Planet Change 105, 152-159 (2013).
Schmidt, A. R. et al. Cretaceous African life captured in amber. Proc. Natl Acad. Sci USA 107, 7329-7334 (2010).
Cusimano, N., & Renner, S. S. Slowdowns in diversification rates from real phylogenies may not be real. Syst. Biol. 59, 458-464 (2010).
Etienne, R. S., & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204-213 (2012).
Cooper, E., Henwood, M. J., & Brown, E. A. Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol. J. Linn. Soc. 107, 425-441 (2012).
Crisp, M. D., & Cook, L. G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192, 997-1009 (2011).
Cox, C. J., Goffinet, B., Wickett, N. J., Boles, S. B., & Shaw, A. J. Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9, 175-195 (2010).
Villarreal, J. C., & Renner, S. S. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc. Natl Acad. Sci USA 109, 18873-18878 (2012).
Villarreal, J. C., & Renner, S. S. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol. Biol. 13, 239 (2013).
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
Stamatakis, A., Hoover, P., & Rougemont, J. A rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75, 758-771 (2008).
Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L., & Waddell, P. J. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42, 384-397 (1993).
Pirie, M. D., Humphreys, A. E., Barker, N. P., & Linder, H. P. Reticulation, data combination, and inferring evolutionary history: an example from Danthonioideae (Poaceae). Syst. Biol. 58, 612-628 (2009).
Reid, N. M. et al. Poor fit to the multispecies coalescent is widely detectable in empirical data. Syst. Biol. 63, 322-333 (2014).
Szöll+osi, G. J., Tannier, E., Daubin, V., & Boussau, B. The inference of gene trees with species trees. Syst. Biol. (doi:10.1093/sysbio/syu048) (2014).
Ho, S. Y. W. The changing face of the molecular evolutionary clock. Trends Ecol. Evol. 29, 496-503 (2014).
Xi, Z., Liu, L., Rest, J. S., & Davis, C. C. Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. Syst. Biol. (doi:10.1093/sysbio/syu055) (2014).
Taylor, D. J., & Piel, W. H. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol. Biol. Evol. 21, 1534-1537 (2004).
Cox, C., & Kauff, F. TCT: Tree Congruence Tester, script. Available at http://biology.duke.edu/bryology/Directory/Cox/cymon.html (2004).
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 (2012).
Manos, P. S. et al. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Syst. Biol. 56, 412-430 (2007).
Barclay, R. S. et al. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae). Am. J. Bot. 100, 2450-2457 (2013).
Burnham, R. J. Hide and go seek: what does presence mean in the fossil record. Ann. Missouri Bot. Gard. 95, 51-71 (2008).
Ho, S. Y., & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367-380 (2009).
Hug, L. A., & Roger, A. J. The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol. Biol. Evol. 24, 1889-1897 (2007).
Clarke, J. T., Warnock, R. C. M., & Donoghue, P. C. J. Establishing a time-scale for plant evolution. New Phytol. 192, 266-301 (2011).
Rambaut, A., & Drummond, A. J. Tracer v1.4. Available at http://tree.bio.ed.ac.uk/software/tracer/(2007).
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92 (2013).
Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508-525 (2014).
Pyron, R. A., & Burbrink, F. T. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol. Evol. 28, 729-736 (2013).
Paradis, E. Time-dependent speciation and extinction from phylogenies: a least squares approach. Evolution 65, 661-672 (2011).
Paradis, E., Claude, J., & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290 (2004).
Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 32, 13410-13414 (2009).
Vanderpoorten, A., & Shaw, A. J. The application of molecular data to the phylogenetic delimitation of species in bryophytes: a note of caution. Phytotaxa 9, 229-237 (2010).
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129-131 (2008).