First ‘in situ’ determination of gas transport coefficients (DO2, DAr and DN2 ) from bulk gas 2 concentration measurements (O2, N2, Ar) in natural sea ice
Crabeck, O.; Delille, Bruno; Rysgaard, S.et al.
2014 • In Journal of Geophysical Research. Oceans, 119, p. 6655-6668
[en] We report bulk gas concentrations of O2, N2 and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2 and 1.09% Ar. Most previous studies suggest that convective transport is the main driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. Therefore, diffusive transport was the main driver of gas migration. By analysing the temporal evolution of an internal gas peak within the ice, we deduced
the bulk gas transport coefficients for oxygen (DO2), argon (DAr) and nitrogen (DN222 ). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in
water (10-5 cm2 s-124 ). We suggest that gas bubbles escaping from the brine to the atmosphere - as
the ice gets more permeable during melt could be responsible for the previously reported high transport coefficients. These results underline that when there is no convective transport within the sea ice, the transport of gas by diffusion through the brines, either in the liquid or gaseous phases, is a major factor in controlling the ocean–atmosphere exchange.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Crabeck, O.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Rysgaard, S.
Thomas, D.N.
Geilfus, N.-X.
Else, B.
Tison, J.-L.
Language :
English
Title :
First ‘in situ’ determination of gas transport coefficients (DO2, DAr and DN2 ) from bulk gas 2 concentration measurements (O2, N2, Ar) in natural sea ice
Broecker, W. S., and T. H. Peng (1974), Gas-exchange rates between air and sea, Tellus, 26(1- 2), 21-35.
Carte, A. E. (1961), Air bubbles in ice, Proc. Phys. Soc. London, 77(495), 757-768.
Cassar, N., B. A. Barnett, M. L. Bender, J. Kaiser, R. C. Hamme, and B. Tilbrook (2009), Continuous high-frequency dissolved O-2/Ar measurements by equilibrator inlet mass spectrometry, Anal. Chem., 81(5), 1855-1864.
Castro-Morales, K., N. Cassar, D. R. Shoosmith, and J. Kaiser (2013), Biological production in the Bellingshausen Sea from oxygen-to-argon ratios and oxygen triple isotopes, Biogeosciences, 10(4), 2273-2291.
Cox, G. F. N., and W. F. Weeks (1983), Equations for determining the gas and b rine volumes in sea-ice samples, J. Glaciol., 29(102), 306-316.
Crabeck, O., B. Delille, D. N. Thomas, N. X. Geilfus, S. Rysgaard, and J. L. Tison (2014), CO2 and CH4 in sea ice from a sub arctic fjord, Biogeosci. Discuss., 11, 4047-4083, doi:10.5194/bgd-11-4047-2014.
Cussler, E. L. (2009), Diffusion, Mass Transfert in Fluid System, 3rd ed., Cambridge Univ. Press, N.Y.
Eicken, H. , M. A. Lange, and G. S. Dieckmann (1991), Spatial variability of sea ice properties in the Northwestern Weddell Sea, J. Geophys. Res., 96(C6), 10,603-10,615.
Else, B. G. T., T. N. Papakyriakou, R. J. Galley, W. M. Drennan, L. A. Miller, and H. Thomas (2011), Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-sea gas transfer during ice formation, J. Geophys. Res., 116, C00G03, doi:10.1 029/2010JC006760.
Garcia, H. E., and L. I. Gordon (1992), Oxygen solubility in seawater-Better fitting equations, Limnol. Oceanogr., 37(6), 1307-1312.
Geilfus, N.-X., G. Carnat, T. Papakyriakou, J.-L. Tison, B. Else, H. Thomas, E. Shadwick, and B. Delille (2012), Dynamics of pCO2 and related airice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea), J. Geophys. Res.,117, C00G10, doi:10.1029/2011JC007118.
Geilfus, N.-X., G. Carnat, G. S. Dieckmann, N. Halden, G. Nehrke, T. Papakyriakou, J.-L. Tison, and B. Delille (2013), First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth, J. Geophys. Res. Oceans, 118, 244-255, doi:10.1029/2012JC007980.
Golden, K. M., S. F. Ackley, and V. I. Lytle (1998), The percolation phase transition in sea ice, Science, 282(5397), 2238-2241.
Golden, K. M., H. Eicken, A. L. Heaton, J. Miner, D. J. Pringle, and J. Zhu (2007), Thermal evolution of permeability and microstructure in sea ice, Geophys. Res. Lett., 34, L16501, doi:10.1029/2007GL030447.
Gosink, T. A., J. G. Pearson, and J. J. Kelly (1976), Gas movement through sea ice, Nature, 263, 41-42.
Hamme, R. C., and S. R. Emerson (2004), The solubility of neon, nitrogen and argon in distilled water and seawater, Deep Sea Res., Part I, 51(11), 1517-1528.
Heinesch, B., M. Yernaux, M. Aubinet, N. X. Geilfus, T. Papakyriakou, G. Carnat, H. Eicken, J. L. Tison, and B. Delille (2009), Measuring air-ice CO2 fluxes in the Arctic, FluxLetter, 2(2), 9-10.
Kaartokallio H.,D.H. Sogaard,L. Norman,S. Rysgaard,J.L. Tison,B. Delille,D.N. Thomas, (2013), Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice, Aquat. Microbial Ecol., 71, (1) 57-73.
Killawee, J. A., I. J. Fairchild, J. L. Tison, L. Janssens, and R. Lorrain (1998), Segregation of solut es and gases in experimental freezing of dilute solutions: Implications for natural glacial systems, Geochim. Cosmochim. Acta, 62(23- 24), 3637-3655.
Langway, C. C. (1958), Ice fabrics and the universal stage, Rep. 62, U.S. Snow, Ice and Permafrost Res. Estab., Wilmette, Ill.
Lepp€aranta, M., and T. Manninen (1988), The brine and gas content of sea ice with attention to low salinities and high temperatures, Finnish Institute of Marine Research, 15 pp, report 2, Helsinki, Finland.
Light, B., G. A. Maykut, and T. C. Grenfell (2003), Effects of temperature on the microstructure of first-year Arctic sea ice, J. Geophys. Res., 108(C2), 3051, doi:10.1029/2001JC000887.
Long, M. H., D. Koopmans, P. Berg, S. Rysgaard, R. N. Glud, and D. H. Sogaard (2012), Oxygen exchange and ice melt measured at the icewater interface by eddy correlation, Biogeoscien ces, 9, 1-11.
Loose, B., W. R. McGillis, P. Schlosser, D. Perovich, and T. Takahashi (2009), Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments, Geophys. Res. Lett., 36, L05603, doi:10.1029/2008GL036318.
Loose, B., P. Schlo sser, D. Perovich, D. Ringelberg, D. T. Ho, T. Takahashi, J. Richter-Menge, C. M. Reynolds, W. R. McGillis, and J. L. Tison (2011), Gas diffusion through columnar laboratory sea ice: Implications for mixed-layer ve ntilation of CO2 in the seasonal ice zone, Tellus, Ser. B, 63(1), 23-39.
Lubetkin, S. D. (2003), Why is it much easier to nucleate gas bubbles than theory predicts?, Langmuir, 19, 2575-2587.
Matsuo, S., and Y. Miyake (1966), Gas composition in ice samples from Antarctica, J. Geophys. Res., 71(22), 5235-5241.
Miller, L. A., T. N. Papakyriakou, R. E. Collins, J. W. Deming, J. K. Ehn, R. W. Macdonald, A. Mucci, O. Owens, M. Raudsepp, and N. Sutherland (2011), Carbon dynamics in sea ice: A winter flux time series, J. Geophys. Res., 116, C02028, doi:10.1029/2009JC006058.
Mortensen, J., K. Lennert, J. Bendtsen, and S. Rysgaard (2011), Heat sources for glacial melt in a sub-Arctic fjord (Godthabsfjord) in contact with the Greenland Ice Sheet, J. Geophys. Res., 116, C01013, doi:10.1029/2010JC006528.
Nomura, D., H. Yoshikawa-Inoue, and T. Toyota (2006), The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, Tellus, Ser. B, 58(5), 418-426.
Nomura, D., H. Yoshikawa-Inoue, T. Toyota, and K. Shirasawa (2010), Effects of snow, snow-melting and re-freezing processes on air-sea ice CO2 flux, J. Glaciol., 56(196), 262-270.
Notz, D., and M. G. Worster (2008), In situ measurements of the evolution of young sea ice, J. Geophys. Res., 113, C03001, doi:10.1029/2007JC004333.
Papadimitriou, S., H. Kennedy, L. Norman, D. P. Kennedy, G. S. Dieckmann, and D. N. Thomas (2012), The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica, J. Geophys. Res., 117, C08011, doi:10.1029/2012JC008058.
Papakyriakou, T., and L. Miller (2011), Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago, Ann. Glaciol., 52(57), 215-224.
Raynaud, D., R. Delmas, M. Ascencio, and M. Legrand (1982), Gas extraction from polar ice cores: A critical issue for studying the evolution of atmospheric CO2 and ice-sheet surface elevation, Ann. Glaciol., 3, 265-268.
Rysgaard, S., and R. N. Glud (2004), Anaerobic N-2 production in Arctic sea ice, Limnol. Oceanogr. Methods, 49(1), 86-94.
Rysgaard, S ., R. N. Glud, M. K. Sejr, J. Bendtsen, and P. B. Christensen (2007), Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572.
Shaw, M. D., L. J. Carpenter, M. T. Baeza-Romero, and A. V. Jackson (2011), Thermal evolution of diffusive transport of atmospheric halocarbons through artificial sea-ice, Atmos. Environ., 45(35), 6393-6402.
Skoog, D. A., D. M. West, and F. J. Holler (1997), Chimie Analytique, De Boeck Univ., Paris.
Sogaard, D. H., D. N. Thomas, S. Rysgaard, R. N. Glud, L. Norman, H. Kaartokallio, T. Juul-Pedersen, and N. X. Geilfus (2013), The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice, Polar Biol., 36(12), 1761-1777.
Srensen, L. L., B. Jensen, R. N. G lud, D. F. McGinnis, M. K. Sejr, J. Sievers, D. H. S-gaard, J.-L. Tison, and S. Rysgaard, (2013), Parameterization of atmosphere-surface exchange of CO2 over sea ice, Cryosphere Discuss., 7, 3899-3929, doi:10.5 194/tcd-7-3899-2013.
Stauffer, B., A. Neftel, H. Oeschger, and J. Schwander (Eds.) (1985), CO2 Concentration in Air Extracted From Greenland Ice Samples, Geophys. Monogr. Ser., 85-89 pp., AGU, Washington, D. C.
Stefels, J., G. Carnat, J. W. H. Dacey, T. Goossens, J. T. M. Elzenga, and J. L. Tison (2012), The analysis of dimethylsulfide and dimethylsulfoniopropionate in sea ice: Dry-crushing and melting using stable isotope a dditions, Mar. Chem., 128-129, 34-43.
Tison, J. L., C. Haas, M. M. Gowing, S. Sleewaegen, and A. Bernard (2002), Tank study of physico-chemical controls on gas content and composition during growth of young sea ice, J. Glaciol., 48(161), 177-191.
Tison, J. L., A. Worby, B. Delille, F. Brabant, S. Papadimitriou, D. Thomas, J. de Jong, D. Lannuzel, and C. Haas (2008), Temporal evolution of decaying summer first-year sea ice in the Western Weddell Sea, Antarctica, Deep Sea Res., Part I, 55(8 -9), 975-987.
Tsurikov, V. L. (1979), The formation and composition of the gas content of sea ice, J. Glaciol., 22(86), 67-81.
UNESCO (1978), Eight report of the joint panel on oceanographic tables and standards, UNESCO Tech. Pap. Mar. Sci., 28.
Vancoppenolle, M., H. Goosse, A. de Montety, T. Fichefet, B. Tremblay, and J. L. Tison (2010), Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica, J. Geophys. Res., 115, C02005, doi:10.1029/2009JC005369.
Wise, D. L., and G. Houghton (1966), Diffusion coefficients of 10 slightly soluble gases in water at 10-60 degrees c, Chem. Eng. Sci., 21(11), 999-1010.
Zemmelin k, H. J., B. Delille, J. L. Tison, E. J. Hintsa, L. Houghton, and J. W. H. Dacey (2006), CO2 deposition over the multi-year ice of the western Weddell Sea, Geophys. Res. Lett., 33, L13606, doi:10.1029/2006GL026320.
Zhou, J. Y., B. Delille, H. Eicken, M. Vancoppenolle, F. Brabant, G. Carnat, N. X. Geilfus, T. Papakyriakou, B. Heinesch, and J. L. Tison (2013), Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons, J. Geophys. Res. Oceans, 118, 3172-3189, doi:10.1002/jgrc.20232.