[en] A combustion model based on a flamelet/progress variable approach for high-speed flows is introduced. In the proposed formulation, the temperature is computed from the transported total energy and tabulated species mass fractions. Only three additional scalar equations need to be solved for the combustion model. Additionally, a flamelet library is used that is computed in a pre-processing step. This approach is very efficient and allows for the use of complex chemical mechanisms. An approximation is also introduced to eliminate costly iterative steps during the temperature calculation. To better account for compressibility effects, the chemical source term of the progress variable is rescaled with the density and temperature. The compressibility corrections are analyzed in an a priori study. The model is also tested in both Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) computations of a hydrogen jet in a supersonic transverse flow. Comparison with experimental measurements shows good agreement, particularly for the LES case. It is found that the disagreement between RANS results and experimental data is mostly due to the mixing model deficiencies and the presumed probability density functions used in the RANS formulation. A sensitivity study of the proposed model shows the importance of the compressibility corrections especially for the source term of the progress variable.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J.M. Schramm, S. Karl, K. Hannemann, J. Steelant, Ground Testing of the HyShot II Scramjet Configuration in HEG, AIAA Paper 2008 2547.
Smart M.K., Hass N.E., Paull A. Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA J. 2006, 2366-2375.
J.M. Hank, J.S. Murphy, R.C. Mutzman, The X-51A Scramjet Engine Flight Demonstration Program, AIAA Paper 2540, 2008.
M. Bolender, J. Staines, D. Dolvin, HIFiRE 6: An Adaptive Flight Control Experiment, AIAA Paper 252.
Moule Y., Sabelnikov V., Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets. Combust. Flame 2014, 161(10):2647-2668.
D. Davidenko, I. Gokalp, E. Dufour, P. Magre, Numerical Simulation of Hydrogen Supersonic Combustion and Validation of Computational Approach, AIAA Paper 2003-7033.
Kumaran K., Babu V. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combust. Flame 2009, 156(4):826-841.
Chakraborty D., Paul P., Mukunda H. Evaluation of combustion models for high speed H2/air confined mixing layer using DNS data. Combust. Flame 2000, 121(1):195-209.
Baurle R., Girimaji S. Assumed PDF turbulence-chemistry closure with temperature-composition correlations. Combust. Flame 2003, 134(1):131-148.
S. Karl, K. Hannemann, A. Mack, J. Steelant, CFD Analysis of the HyShot II Scramjet Experiments in the HEG Shock Tunnel, AIAA Paper 2008-2548.
Baurle R., Hsu A., Hassan H. Assumed and evolution probability density functions in supersonic turbulent combustion calculations. J. Propul. Power 1995, 11(6):1132-1138.
Möbus H., Gerlinger P., Brüggemann D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion. Combust. Flame 2003, 132(1):3-24.
Koo H., Donde P., Raman V. A quadrature-based LES/transported probability density function approach for modeling supersonic combustion. Proc. Combust. Inst. 2011, 33(2):2203-2210.
Donde P., Koo H., Raman V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion. J. Comput. Phys. 2012, 231(17):5805-5821.
F. Genin, B. Chernyavsky, S. Menon, Large Eddy Simulation of Scramjet Combustion using a Subgrid Mixing/Combustion Model, AIAA Paper 2003-7035.
C.D. Ghodke, J.J. Choi, S. Srinivasan, S. Menon, Large Eddy Simulation of Supersonic Combustion in a Cavity-Strut Flameholder, AIAA Paper 2011-323.
Peters N. Turbulent Combustion 2000, Cambridge University Press.
Pitsch H. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 2006, 38:453-482.
Pierce C.D., Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 2004, 504:73-97.
Ihme M., Cha C.M., Pitsch H. Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst. 2005, 30(1):793-800.
Berglund M., Fureby C. LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst. 2007, 31(2):2497-2504.
Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 2000, 4(7):463-480.
Kumar S., Tamaru T. Computation of turbulent reacting flow in a jet assisted ram combustor. Comput. Fluids 1997, 26(2):117-133.
Vicquelin R., Fiorina B., Payet S., Darabiha N., Gicquel O. Coupling tabulated chemistry with compressible CFD solvers. Proc. Combust. Inst. 2011, 33(1):1481-1488.
Bird R.B., Stewart W.E., Lightfoot E.N. Transport Phenomena 2007, Wiley. com.
Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32(8):1598-1605.
Moin P., Squires K., Cabot W., Lee S. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 1991, 3:2746.
A. Saghafian, High-fidelity Simulations and Modeling of Compressible Reacting Flows, Ph.D. thesis, Stanford University, 2014.
M. Ihme, Pollutant Formation and Noise Emission in Turbulent Non-premixed Flames, Ph.D. thesis, Stanford University, 2007.
C.D. Pierce, Progress-Variable Approach for Large-eddy Simulation of Turbulent Combustion, Ph.D. thesis, Stanford University, 2001.
Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 1984, 10(3):319-339.
Ihme M., Pitsch H. Prediction of extinction and re-ignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure. Combust. Flame 2008, 155(1):70-89.
H. Pitsch, Modellierung der Zündung und Schadstoffbildung bei der diesel-motorischen Verbrennung mit Hilfe eines interaktiven Flamelet-Modells, Ph.D. thesis, RWTH Aachen, 1998.
Wang L., Pitsch H., Yamamoto K., Orii A. An efficient approach of unsteady flamelet modeling of a cross-flow-jet combustion system using LES. Combust. Theory Model. 2011, 15(6):849-862.
Mittal V., Pitsch H. A flamelet model for premixed combustion under variable pressure conditions. Proc. Combust. Inst. 2013, 34(2):2995-3003.
Ribert G., Gicquel O., Darabiha N., Veynante D. Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames. Combust. Flame 2006, 146(4):649-664.
Wang K., Ribert G., Domingo P., Vervisch L. Self-similar behavior and chemistry tabulation of burnt-gas diluted premixed flamelets including heat-loss. Combust. Theory Model. 2010, 14(4):541-570.
M. Gamba, M.G. Mungal, R.K. Hanson, Ignition and Near-wall burning in Transverse Hydrogen Jets in Supersonic Crossflow, AIAA Paper, 2011a, 4-7.
W.N. Heltsley, J.A. Snyder, C.C. Cheung, M. Mungal, R.K. Hanson, Combustion Stability Regimes of Hydrogen Jets in Supersonic Crossflow, AIAA Paper 5401.
Lee M., McMillin B., Palmer J., Hanson R. Planar fluorescence imaging of a transverse jet in a supersonic crossflow. J. Propul. Power 1992, 8(4):729-735.
McMillin B., Seitzman J., Hanson R. Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfield. AIAA J. 1994, 32(10):1945-1952.
A. Ben-Yakar, R.K. Hanson, Supersonic Combustion of Cross-flow Jets and the Influence of Cavity Flame-holders, AIAA Paper 484, 1999.
Muppidi S., Mahesh K. Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 2005, 530(5):81-100.
Muppidi S., Mahesh K. Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 2007, 574:59-84.
Sau R., Mahesh K. Optimization of pulsed jets in crossflow. J. Fluid Mech. 2010, 653:365.
Grout R., Gruber A., Yoo C., Chen J. Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc. Combust. Inst. 2011, 33(1):1629-1637.
Boles J.A., Edwards J.R., Bauerle R.A. Large-eddy/Reynolds-averaged Navier-Stokes simulations of sonic injection into Mach 2 crossflow. AIAA J. 2010, 48(7):1444-1456.
Génin F., Menon S. Dynamics of sonic jet injection into supersonic crossflow. J. Turb. 2009, 182(11).
Kawai S., Lele S.K. Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 2010, 48(9):2063-2083.
B. Fiorina, S.K. Lele, Numerical Investigation of a Transverse Jet in a Supersonic Crossflow using Large Eddy Simulation, AIAA Paper 2006-3712.
Won S.-H., Jeung I.-S., Parent B., Choi J.-Y. Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation. AIAA J. 2010, 48(6):1047-1058.
G.A. Brès, J.W. Nichols, S.K. Lele, F.E. Ham, R.H. Schlinker, R.A. Reba, J.C. Simonich, Unstructured Large Eddy Simulation of a Hot Supersonic Over-Expanded Jet with Chevrons, AIAA Paper 2012-2213.
Pecnik R., Terrapon V.E., Ham F., Iaccarino G., Pitsch H. Reynolds-averaged Navier-Stokes simulations of the hyshot II scramjet. AIAA J. 2012, 50(8):1717-1732.
Toro E.F., Spruce M., Speares W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 1994, 4(1):25-34.
Batten P., Leschziner M., Goldberg U. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 1997, 137(1):38-78.
T.J. Barth, D.C. Jespersen, The Design and Application of Upwind Schemes on Unstructured Meshes, AIAA Paper 484.
Venkatakrishnan V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 1995, 118(1):120-130.
R. Pecnik, V. Terrapon, F. Ham, G. Iaccarino, Full system scramjet simulation, in: Annual Research Briefs of the Center for Turbulence Research.
B. Satish, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, H. Zhang, PETSc Web Page. http://www.mcs.anl.gov/petsc.
Bates R.W., Golden D.M., Hanson R.K., Bowman C.T. Experimental study and modeling of the reaction H+O2+M→HO2+M (M=Ar, N2, H2O) at elevated pressures and temperatures between 1050 and 1250K. Phys. Chem. 2001, 3(12):2337-2342.
Herbon J.T., Hanson R.K., Golden D.M., Bowman C.T. A shock tube study of the enthalpy of formation of OH. Proc. Combust. Inst. 2002, 29(1):1201-1208.
Gamba M., Terrapon V.E., Saghafian A., Mungal M.G., Pitsch H. Large-eddy/Reynolds-averaged Navier-Stokes simulations of sonic injection into Mach 2 crossflow. Ann. Res. Briefs, Center Turbul. Res. 2011, 259-272.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.