Zhang H.J., and Ito Y. pH control of transport through a porous membrane self-assembled with a poly(acrylic acid) loop brush. Langmuir 17 (2001) 8336
Ito Y., Inaba M., Chung D.J., and Imanishi Y. Control of water permeation by pH and ionic strength through a porous membrane having poly(carboxylic acid) surface-grafted. Macromolecules 25 (1992) 7313
Ito Y., Park Y.S., and Imanishi Y. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J. Am. Chem. Soc. 119 (1997) 2739
Ito Y., Park Y.S., and Imanishi Y. Imaging of a pH-sensitive polymer brush on a porous membrane using atomic force microscopy in aqueous solution. Macromol. Rapid Commun. 18 (1997) 221
Ito Y., Ochiai Y., Park Y.S., and Imanishi Y. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J. Am. Chem. Soc. 119 (1997) 1619
Ito Y. Signal-responsive gating by a polyelectrolyte pelage on a nanoporous membrane. Nanotechnology 9 (1998) 205
Okahata Y., Noguchi H., and Seki T. Thermoselective permeation from a polymer-grafted capsule membrane. Macromolecules 19 (1986) 493
Mika A.M., Childs R.F., and Dickson J.M. Chemical valves based on poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 153 (1999) 45
Mika A.M., and Childs R.F. Acid/base properties of poly(4-vinylpyridine) anchored within microporous membranes. J. Membr. Sci. 152 (1999) 129
Hester J.F., Olugebofola S.C., and Mayes A.M. Preparation of pH-responsive polymer membranes by self-organization. J. Membr. Sci. 208 (2002) 375
Lee D., Nolte A.J., Kunz A.L., Rubner M.F., and Cohen R.E. pH-induced hysteretic gating of track-etched polycarbonate membranes: swelling/deswelling behavior of polyelectrolyte multilayers in confined geometry. J. Am. Chem. Soc. 128 (2006) 8521
Lee S.B., and Martin C.R. pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. Anal. Chem. 73 (2001) 768
Iwata H., Oodate M., Uyama Y., Amemiya H., and Ikada Y. Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane. J. Membr. Sci. 55 (1991) 119
Park Y.S., Ito Y., and Imanishi Y. Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 14 (1998) 910
Li Y., Chu L.Y., Zhu J.H., Whang H.D., Xia S.L., and Chen W.M. Thermoresponsive gating characteristics of poly(N-isopropylacrylamide)-grafted porous poly(vinylidene fluoride) membranes. Ind. Eng. Chem. Res. 43 (2004) 2643
Chu L.Y., Li Y., Zhu J.H., and Chen W.M. Negatively thermoresponsive membranes with functional gates driven by zipper-type hydrogen-bonding interactions. Angew. Chem. Int. Ed. 44 (2005) 2124
Lequieu W., Shtanko N.I., and DuPrez F.E. Track etched membranes with thermo-adjustable porosity and separation properties by surface immobilization of poly(N-vinylcaprolactam). J. Membr. Sci. 256 (2005) 64
Bhaskar R.K., Sparer R.V., and Himmelstein K.J. Effect of an applied electric field on liquid crystalline membranes: control of permeability. J. Membr. Sci. 24 (1985) 83
Kang M.S., and Martin C.R. Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method. Langmuir 17 (2001) 2753
Lee S.B., and Martin C.R. Electromodulated molecular transport in gold-nanotube membranes. J. Am. Chem. Soc. 124 (2002) 11850
Mika A.M., Childs R.F., Dickson J.M., Maccarry B.E., and Gagnon D.R. A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity. J. Membr. Sci. 108 (1995) 37
Edmondson S., Osborne V., and Huck W.T.S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev. 33 (2004) 14
Voccia S., Jérôme C., Detrembleur C., Leclere Ph., Gouttebaron R., Hecq M., Gilbert B., Lazzaroni R., and Jérôme R. Controlled free radical polymerization of styrene initiated from alkoxyamine attached to polyacrylate chemisorbed onto conducting surfaces. Chem. Mater. 15 (2003) 923
Bontempo D., Tirelli N., Feldman K., Masci G., Crescenzi V., and Hubbell J.A. Atom transfer radical polymerization as a tool for surface functionalization. Adv. Mater. 14 (2002) 1239
Matyjaszewski K., and Xia J. Atom transfer radical polymerization. Chem. Rev. 101 (2001) 2921
Kamigaito M., Ando T., and Sawamoto M. Metal-catalyzed living radical polymerization. Chem. Rev. 101 (2001) 3689
Boyes S.G., Brittain W.J., Weng X., and Cheng S.Z.D. Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization. Macromolecules 35 (2002) 4960
Bao Z., Bruening M.L., and Baker G.L. Rapid growth of polymer brushes from immobilized initiators. J. Am. Chem. Soc. 128 (2006) 9056
Ayres N., Boyes S.G., and Brittain W.J. Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization. Langmuir 23 (2007) 182
Huang J., Murata H., Koepsel R.R., Russell A.J., and Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 8 (2007) 1396
Peng Q., Lai D.M.Y., Kang E.T., and Neoh K.G. Preparation of polymer-silicon(1 0 0) hybrids via interface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Macromolecules 39 (2006) 5577
Rowe-Konopacki M.D., and Boyes S.G. Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique. Macromolecules 40 (2007) 879
Robinson K.L., Khan M.A., de Paz Banez M.V., Wang X.-S., and Armes S.P. Controlled polymerization of 2-hydroxyethyl methacrylate by ATRP at ambient temperature. Macromolecules 34 (2001) 3155
Jones D.M., and Huck W.T.S. Controlled surface-initiated polymerizations in aqueous media. Adv. Mater. 13 (2001) 1256
Shtanko N., Kabanov V., Apel P.Y., Yoshida M., and Vilenskii A. Preparation of permeability-controlled track membranes on the basis of 'smart' polymers. J. Membr. Sci. 179 (2000) 155
Reber N., Küchel A., Spohr R., Wolf A., and Yoshida M. Transport properties of thermo-responsive ion track membranes. J. Membr. Sci. 193 (2001) 49
Yang B., and Yang W. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. J. Membr. Sci. 218 (2003) 247
Xie R., Chu L.Y., Chen W.M., Xiao W., Wang H.D., and Qu J.B. Characterization of microstructure of poly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. J. Membr. Sci. 258 (2005) 157
Lokuge I., Wang X., and Bohn P.W. Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23 (2007) 305
Geismann C., Yaroshchuk A., and Ulbricht M. Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-responsive polymers. Langmuir 23 (2007) 76
Roux S., and Demoustier-Champagne S. Surface-initiated polymerization from poly(ethylene terephthalate). J. Polym. Sci. A: Polym. Chem. 41 (2003) 1347
Ferain E., and Legras R. Track-etched membrane: dynamics of pore formation. Nucl. Instrum. Meth. Phys. Res. B 84 (1994) 331
Ferain E., and Legras R. Track-etch templates designed for micro- and nanofabrication. Nucl. Instrum. Meth. Phys. Res. B 208 (2003) 115
Chein W., and McCarthy T.J. Chemical surface modification of poly(ethylene terephthalate). Macromolecules 31 (1998) 3648
Marchand-Brynaert J., Deldime M., Dupont I., Dewez J.-L., and Schneider Y.-J. Surface functionalization of poly(ethylene terephthalate) film and membrane by controlled wet chemistry: chemical characterization of carboxylated surfaces. J. Colloid Interf. Sci. 173 (1995) 236
Taunton H.J., Toprakcioglu C., Fetters L.J., and Klein J. Forces between surfaces bearing terminally anchored polymer chains in good solvents. Nature 332 (1998) 712
Israelachvili J. Intermolecular and Surface Forces (1991), Academic Press, San Diego
de Gennes P.G. Polymers at an interface: a simplified view. Adv. Colloid Interf. Sci. 27 (1987) 189
The range of grafting density of the PNIPAM layer grafted on PET membrane surface was estimated from the thickness of the collapsed state at 50 °C (44 nm, Table 2, entry 3) that is close to the dry polymer film thickness and from the molecular weight of grafted PNIPAM chains determined by AFM (estimated degree of polymerization∼1920, M∼217.000).
Mendez S., Curro J.G., McCoy J.D., and Lopez G.P. Computational modeling of the temperature-induced structural changes of tethered poly(N-isopropylacrylamide) with self-consistent field theory. Macromolecules 38 (2005) 174
Yim H., Kent S., Mendez S., Lopez G.P., Satija S., and Seo Y. Effects of grafting density and molecular weight on the temperature-dependent conformational change of poly(N-isopropylacrylamide) grafted chains in water. Macromolecules 39 (2006) 3420
Goodman D., Kizhakkedathu J.N., and Brooks D.E. Molecular weight and polydispersity estimation of adsorbing polymer brushes by atomic force microscopy. Langmuir 20 (2004) 3297
Goodman D., Kizhakkedathu J.N., and Brooks D.E. Evaluation of an atomic force microscopy pull-off method for measuring molecular weight and polydispersity of polymer brushes: effect of grafting density. Langmuir 20 (2004) 6238
Al-Maawali S., Bemis J.E., Akhremitchev B.B., Leecharoen R., Janesko B.G., and Walker G.C. Study of the polydispersity of grafted poly(dimethylsiloxane) surfaces using single-molecule atomic force microscopy. J. Phys. Chem. B 105 (2001) 3965
Cuenot S., Gabriel S., Jérôme R., Jérôme C., Fustin C.A., Jonas A.M., and Duwez A.S. First insights into electrografted polymers by AFM-based force spectroscopy. Macromolecules 39 (2006) 8428