[en] The environmental impacts of livestock production are attracting increasing attention, especially the emission of greenhouse gases (GHGs). Currently, pork is the most widely consumed meat product in the world, and its production is expected to grow in the next few decades. This paper deals with the production of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) by animals and by manure from pig buildings, with a focus on the influence of rearing techniques and nutrition. GHG emissions in piggeries originate from animals through CO2 exhalation and CH4 enteric fermentation, and from manure through the release of CO2, CH4 and N2O. The level of the CO2 exhalation (E-CO2, pig) depends on the physiological stage, the body weight (BW), the production level and the feed intake of the animals concerned. Enteric CH4 (E-CH4, pig) is principally related to dietary fibre intake and the fermentative capacity of the pig’s hindgut. Based on a review of the literature, the following equations are proposed in order to estimate E-CO2, pig (in kg day_1) and E-CH4,pig (in g day_1) for fattening pigs: E-CO2, pig = 0.136 _ BW0.573; E-CH4,pig = 0.012 _ dRes; with BW (in kg) and dRes for digestible residues (in g day_1). Numerous pathways are responsible for GHG production in manure. In addition, the microbial, physical and chemical properties of manure interact and modulate the level of emissions. Influencing factors for removal systems for both liquid and solid fractions of manure have been investigated. A large range of parameters showing an impact on the level of GHG production from pig houses has been reported. However, few of these can be considered unquestionably as GHG mitigation techniques because some strategies have shown contradictory effects depending on the gas, the circumstances and the study. Nevertheless, frequent manure removal seems to be an efficient means to reduce concurrently CO2-, CH4- and N2O-emissions from pig buildings for both slatted and bedded floor systems. Manure removal operations may be associated with specific storage conditions and efficient treatment in order to further reduce emissions. Several feeding strategies have been tested to decrease GHG emissions but they seem to be ineffective in reducing emissions both significantly and durably. In general, good management practices that enhance zootechnical performance will have beneficial consequences on GHG emission intensity. Taking into account the results described in the literature regarding CO2-, CH4- and N2O-production from animals and manure in pig houses, we estimate total GHG emissions to 448.3 kg CO2equiv. per slaughter pig produced or 4.87 kg CO2equiv. per kg carcass. The fattening period accounts for more than 70% of total emissions, while the gestation, lactation and weaning periods each contribute to about 10% of total emissions. Emissions of CO2, CH4 and N2O contribute to 81, 17 and 2% of total emissions from pig buildings, representing 3.87, 0.83 and 0.11 kg CO2equiv. per kg carcass, respectively.
Disciplines :
Life sciences: Multidisciplinary, general & others Zoology Agriculture & agronomy Animal production & animal husbandry Environmental sciences & ecology
Author, co-author :
Philippe, François-Xavier ; Université de Liège - ULiège > Département de productions animales > Département de productions animales
Nicks, Baudouin ; Université de Liège - ULiège > Département de productions animales > Ecologie et éthologie vétérinaires
Language :
English
Title :
Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aarnink A.J.A., Huisin 't Veld J., Hol J.M.G., Vermeij I. Kempfarm Housing System for Growing-finishing Pigs: Environmental Emissions and Investment Costs. In Animal Sciences Group, Report 67 2007, Wageningen University and Research Centre, Lelystad, The Netherlands.
Aarnink A.J.A., Hol A., Nijeboer G.M. Ammonia Emission Factor for Using Benzoic Acid (1% Vevovitall®) in the Diet of Growing-Finishing Pigs. In Animal Sciences Group, Report 133 2008, Wageningen University and Research Centre, Wageningen, The Netherlands, p. 21.
Ahlgrimm H., Breford J. Methanemissionen aus der schweinemast. Landbauforschung Volkenrode 1998, 1:26-34.
Amon B., Kryvoruchko V., Amon T., Zechmeister-Boltenstern S. Methane: nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112:153-162.
Amon M., Dobeic M., Misselbrook T.H., Pain B.F., Phillips V.R., Sneath R.W. A farm scale study on the use of de-odorase(R) for reducing odor and ammonia emissions from intensive fattening piggeries. Bioresour. Technol. 1995, 51:163-169.
Anderson G.A., Smith R.J., Bundy D.S., Hammond E.G. Model to predict gaseous contaminants in swine confinement buildings. J. Agric. Eng. Res. 1987, 37:235-253.
Andersson M. Performance of bedding materials in affecting ammonia emissions from pig manure. J. Agric. Eng. Res. 1996, 65:213-222.
Atakora J.K., Moehn S., Sands J.S., Ball R.O. Effects of dietary crude protein and phytase-xylanase supplementation of wheat grain based diets on energy metabolism and enteric methane in growing finishing pigs. Anim. Feed Sci. Technol. 2011, 166:422-429.
Atakora J.K.A., McMillan D.J., Moehn S., Ball R.O. Low protein diet for sows: effects on production of carbon dioxide and heat. Adv. Pork Prod. 2002, 13. Abstract #14.
Atakora J.K.A., Moehn S., Ball R.O. Low protein diets for sows reduce greenhouse gas production. Adv. Pork Prod. 2003, 14. Abstract #16.
Atakora J.K.A., Moehn S., Ball R.O. Performance and greenhouse gas emission in finisher pigs fed very low protein diet. Adv. Pork Prod. 2005, 16. Abstract #14.
Atakora J.K.A., Moehn S., Ball R.O. Enteric methane produced by finisher pigs is affected by dietary crude protein content of barley grain based, but not by corn based, diets. Anim. Feed Sci. Technol. 2011, 166-167:412-421.
Aubry A., Quiniou N., Cozler Y.L., Querne M. New standardized criteria for GTE performances. Techni-Porc. 2004, 27:37-41.
Ball R.O., Möhn S. Feeding strategies to reduce greenhouse gas emissions from pigs. Adv. Pork Prod. 2003, 14:301-311.
Blanes-Vidal V., Hansen M.N., Pedersen S., Rom H.B. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ. 2008, 124:237-244.
Brown-Brandl T.M., Nienaber J.A., Xin H., Gates R.S. A literature review of swine heat production. Trans. ASAE 2004, 47:259.
Bruce J.M. Straw-flow - a high welfare system for pigs. Farm Build. Prog. 1990, 102:9-13.
Cabaraux J.F., Philippe F.X., Laitat M., Canart B., Vandenheede M., Nicks B. Gaseous emissions from weaned pigs raised on different floor systems. Agric. Ecosyst. Environ. 2009, 130:86-92.
Chae K., Jang A., Yim S., Kim I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99:1-6.
CIGR Fourth Report of Working Group on Climatization of Animal Houses. Heat and Moisture Production at Animal and House Levels 2002, 45. Danish Institute of Agricultural Sciences, Horsens, Denmark.
Clark O.G., Moehn S., Edeogu I., Price J., Leonard J. Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions. J. Environ. Qual. 2005, 34:1461-1466.
Colina J.J., Lewis A.J., Miller P.S., Fischer R.L. Dietary manipulation to reduce aerial ammonia concentrations in nursery pig facilities. J. Anim. Sci. 2001, 79:3096-3103.
Conrad R. Control of methane production in terrestrial ecosystems. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere 1989, 39-58. John Wiley & Sons Ltd., Chichester, England. M. Andreae, D. Schimel (Eds.).
Costa A., Chiarello G.L., Selli E., Guarino M. Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J. Environ. Manage. 2012, 96:86-90.
Costa A., Guarino M. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry. Atmos. Environ. 2009, 43:1548-1556.
Dämmgen U., Amon B., Hutchings N.J., Haenel H.D., Rösemann C. Data sets to assess methane emissions from untreated cattle and pig slurry and solid manure storage systems in the German and Austrian emission inventories. Landbauforschung Volkenrode 2012, 62:1-19.
Dämmgen U., Schulz J., Klausing H.K., Hutchings N.J., Haenel H.D., Rösemann C. Enteric methane emissions from German pigs. Landbauforschung Volkenrode 2012, 62:83-96.
de Sousa, P., Pedersen, S., 2004. Ammonia emission from fattening pig houses in relation to animal activity and carbon dioxide production. Agricultural Engineering International: CIGR Ejournal VI, Manuscript BC04 003.
de Vries J.W., Aarnink A.J.A., Groot Koerkamp P.W.G., De Boer I.J.M. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management. Environ. Sci. Technol. 2013, 47:1589-1597.
Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. J. Agric. Sci. 1996, 127:501-509.
Dinuccio E., Berg W., Balsari P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos. Environ. 2008, 42:2448-2459.
Dong H., Zhu Z., Shang B., Kang G., Zhu H., Xin H. Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China. Atmos. Environ. 2007, 41:2391-2399.
Dong H., Zhu Z., Zhou Z., Xin H., Chen Y. Greenhouse gas emissions from swine manure stored at different stack heights. Anim. Feed Sci. Technol. 2011, 166:557-561.
Driemer J., Van den Weghe H. Nitrous oxide emissions during nitrification and denitrification of pig manure. Proceedings of the International Symposium on Ammonia and Odour Control from Animal Production Facilities 1997, 389-396. J.A.M. Voermans, G.J. Monteny (Eds.).
Duffy C., Brooks P. Using Yucca schidigera in pig diets: effects on nitrogen metabolism. Biotechnology in the Feed Industry 1998, 61. Alltach, Nicholasville, Kentucky, USA. T.P. Lyons, K.A. Jacques (Eds.).
Eriksen J., Adamsen A.P.S., Norgaard J.V., Poulsen H.D., Jensen B.B., Petersen S.O. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry: effects of dietary methionine and benzoic acid. J. Environ. Qual. 2010, 39:1097-1107.
FAO World Livestock 2011- Livestock in Food Security 2011, FAO, Rome, Italy.
FAO Greenhouse Gas Emissions From Pig and Chicken Supply Chains - A Global Life Cycle Assessment 2013, FAO, Roma, Italy.
FAO Greenhouse Gas Emissions From Ruminant Supply Chains - A Global Life Cycle Assessment 2013, FAO, Roma, Italy.
Feddes J.J.R., DeShazer J.A. Feed consumption as a parameter for establishing minimum ventilation rates. Trans. ASAE 1988, 31:571-575.
Fitamant D., Quillien J.P., Callarec J., Morvan J., Lemasle M., Laplanche A. Nitrogen distribution and net flow in the form of gas and liquid from a piggery. Journées Rech. Porcine 1999, 31:99-104.
Fuller R. Probiotics in man and animals. J. Appl. Microbiol. 1989, 66:365-378.
Galassi G., Crovetto G.M., Rapetti L., Tamburini A. Energy and nitrogen balance in heavy pigs fed different fibre sources. Livest. Prod. Sci. 2004, 85:253-262.
Galassi G., Crovetto G.M., Rapetti L. Trend of energy and nitrogen utilization of high fibre diets in pigs from 100 to 160kg bodyweight. Ital. J. Anim. Sci. 2005, 4:149-157.
Godbout S., Lague C., Lemay S.P., Marquis A., Fonstad T.A. Greenhouse gas and odour emissions from swine operations under liquid manure management in Canada. Proceedings of the International Symposium on Gaseous and Odour Emissions from Animal Production Facilities 2003, 426-443. Commission Internationale de Génie Rural (Ed.).
Godbout S., Lemay S.P., Marquis A., Pouliot F., Larouche J.P., Hamel D., Lachance I., Belzile M., Dufour V., Turgeon N. Évaluation Technico-économique D'un Système De Séparation Liquide/solide Des Déjections À La Source Dans Un Bâtiment Porcin Et Les Impacts Sur L'environnement 2006, Institut de Recherche et de Développement en Agro-environnement, Quebec, Canada.
Groenestein C.M. Ammonia emission from pig houses after frequent removal of slurry with scrapers. Proceedings of the XII World Congress on Agricultural Engineering 1994, 543-550. CIGR, Merelbeke, Belgium.
Groenestein C.M., Hendriks M., den Hartog L.A. Effect of feeding schedule on ammonia emission from individual and group-housing systems for sows. Biosyst. Eng. 2003, 85:79-85.
Groenestein C.M., Van Faassen H.G. Volatilization of ammonia, nitrous oxide and nitric oxide in deep-litter systems for fattening pigs. J. Agric. Eng. Res. 1996, 65:269-274.
Guarino A., Fabbri C., Brambilla M., Valli L., Navarotto P. Evaluation of simplified covering systems to reduce gaseous emissions from livestock manure storage. T. ASABE 2006, 49:737-747.
Guarino M., Fabbri C., Navarotto P., Valli L., Mascatelli G., Rossetti M., Mazzotta V. Ammonia, methane and nitrous oxide emissions and particulate matter concentrations in two different buildings for fattening pig. Proceedings of the International Symposium on Gaseous and Odour Emissions from Animal Production Facilities 2003, 140-149. Commission Internationale de Génie Rural (Ed.).
Guingand N., Quiniou N., Courboulay V. Comparison of ammonia and greenhouse gas emissions from fattening pigs kept either on partially slatted floor in cold conditions or on fully slatted floor in thermoneutral conditions. Journées Rech. Porcine 2010, 42:277-284.
Guingand N., Rugani A. Incidence de la réduction de la quantité de paille et de la fréquence des apports sur les émissions d'ammoniac: de GES et d'odeurs chez les porcs en engraissement. Journées Rech. Porcine 2013, 45:141-142.
Haeussermann A., Hartung E., Gallmann E., Jungbluth T. Influence of season ventilation strategy, and slurry removal on methane emissions from pig houses. Agric. Ecosyst. Environ. 2006, 112:115-121.
Hamel D., Pouliot F., Leblanc R., Godbout S., Von Bermuth R.D., Hill J. Évaluation Technico-économique D'un Système De Séparation Liquide-solide Des Déjections À La Source Dans Un Bâtiment Porcin Et Les Impacts Sur L'environnement 2004, Centre de développement du porc du Québec, Ste Foy Québec, Canada.
Hansen K.H., Angelidaki I., Ahring B.K. Improving thermophilic anaerobic digestion of swine manure. Water Res. 1999, 33:1805-1810.
Hansen M.N., Henriksen K., Sommer S.G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos. Environ. 2006, 40:4172-4181.
Hao X., Larney F.J. Reducing greenhouse gas emissions from animal manure. Manure Manage. Update 2011, 37-45.
Hassouna M., Robin P., Texier C., Ramonet Y. NH3, N2O, CH4 emissions from pig-on-litter systems. Proceedings of the International Workshop on Green Pork Production 2005, pp. 121-122.
Hayes E.T., Curran T.P., Dodd V.A. Odour and ammonia emissions from intensive pig units in Ireland. Bioresour. Technol. 2006, 97:940-948.
Hellmann B., Zelles L., Palojarvi A., Bai Q.Y. Emission of climate-relevant trace gases and succession of microbial communities during open-window composting. Appl. Environ. Microbiol. 1997, 63:1011-1018.
Husted S. Seasonal variation in methane emission from stored slurry and solid manures. J. Environ. Qual. 1994, 23:585-592.
INRA-AFZ Tables De Composition Et De Valeur Nutritive Des Matières Premières Destinées Aux Animaux D'élevage 2004, INRA Editions, Paris France.
IPCC IPPC Guidelines for National Greenhouse Gas Inventories 2006, Institute for Global Environmental Strategies, Hayama, Japan.
IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jarret G., Cerisuelo A., Peu P., Martinez J., Dourmad J.-Y. Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agric. Ecosyst. Environ. 2012, 160:51-58.
Jarret G., Martinez J., Dourmad J.-Y. Pig feeding strategy coupled with effluent management - fresh or stored slurry: solid phase separation - on methane potential and methane conversion factors during storage. Atmos. Environ. 2011, 45:6204-6209.
Jeppsson K.H. Ammonia emission from different deep-litter materials for growing-finishing pigs. Swed. J. Agric. Res. 1998, 28:197-206.
Jeppsson K.H. Carbon dioxide emission and water evaporation from deep litter systems. J. Agric. Eng. Res. 2000, 77:429-440.
Jeppsson K.H. Diurnal variation in ammonia, carbon dioxide and water vapour emission from an uninsulated: deep litter building for growing/finishing pigs. Biosyst. Eng. 2002, 81:213-223.
Jiang T., Schuchardt F., Li G.X., Guo R., Luo Y.M. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system. Chemosphere 2013, 90:1545-1551.
Jorgensen H., Zhao X.Q., Eggum B.O. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Br. J. Nutr. 1996, 75:365-378.
Jorgensen H. Methane emission by growing pigs and adult sows as influenced by fermentation. Livestock Sci. 2007, 109:216-219.
Jorgensen H., Serena A., Hedemann M.S., Knudsen K.E.B. The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livestock Sci. 2007, 109:111-114.
Kaparaju P., Rintala J. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy: sow and pig farms in Finland. Renewable Energy 2011, 36:31-41.
Kebreab E., Clark K., Wagner-Riddle C., France J. Methane and nitrous oxide emissions from Canadian animal agriculture: a review. Can. J. Anim. Sci. 2006, 86:135-158.
Kermarrec C., Robin P. Nitrogenous gas emissions during the rearing of pigs on sawdust litter. Journées Rech. Porcine 2002, 34:155-160.
Kotsopoulos T.A., Karamanlis X., Dotas D., Martzopoulos G.G. The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosyst. Eng. 2008, 99:105-111.
Krieter J. Evaluation of different pig production systems including economic, welfare and environmental aspects. Archiv fur Tierzucht 2002, 45:223-236.
Kroodsma W., Tveld J., Scholtens R. Ammonia emission and its reduction from cubicle houses by flushing. Livestock Prod. Sci. 1993, 35:293-302.
Lagadec, S., Landrain, B., Landrain, P., Hassouna, M., Robin, P., 2012. Systèmes d'évacuations fréquentes des déjections Rapport d'étude, Chambres d'agriculture de Bretagne, p. 10.
Lägue C., Marquis A., Godbout S., Legace R., Fonstad T.A., Lemay S.P., Joncas R., Jaulin L. Greenhouse Gas Emissions from Swine Operations in Québec and Saskatchewan: Benchmark Assessments 2004, University of Saskatchewan, Saskatchewan, Canada.
Lavoie, J., Beaudet, Y., Létourneau, C., Godbout, S., Lemay, S., Belzile, M., Lachance, I., Pouliot, F., 2006. Evaluation de la qualité de l'air dans les porcheries équipées d'un système de séparation liquide-solide des déjections, Report R-460; IRSST, Montréal, QC, Canada.
Le Goff G., Dubois S., Van Milgen J., Noblet J. Influence of dietary fibre level on digestive and metabolic utilisation of energy in growing and finishing pigs. Anim. Res. 2002, 51:245-260.
Le Goff G., Le Groumellec L., van Milgen J., Dubois S., Noblet J. Digestibility and metabolic utilisation of dietary energy in adult sows: influence of addition and origin of dietary fibre. Br. J. Nutr. 2002, 87:325-335.
Le P.D., Aarnink A.J.A., Jongbloed A.W. Odour and ammonia emission from pig manure as affected by dietary crude protein level. Livestock Sci. 2009, 121:267-274.
Lessard P., Bourgault C., LeBihan Y., Turgeon N., Aubry G., Buelna G. Treatment of pig slurry by a process of biofiltration: study of formation of methane. Can. J. Civil Eng. 2009, 36:1958-1962.
Lesschen J.P., van den Berg M., Westhoek H.J., Witzke H.P., Oenema O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166-167:16-28.
Li W., Powers W., Hill G.M. Feeding distillers dried grains with solubles and organic trace mineral sources to swine and the resulting effect on gaseous emissions. J. Anim. Sci. 2011, 89:3286-3299.
Loyon L., Guiziou F., Beline E., Peu P. Gaseous emissions (NH3 N2O, CH4 and CO2) from the aerobic treatment of piggery slurry - comparison with a conventional storage system. Biosyst. Eng. 2007, 97:472-480.
Loyon, L., Guiziou, F., Picard, S., Saint-Cast, P., 2006. Impact of peat and polystyrene ball covers on the ammonia emissions from the storage and spreading of pig slurry: a farm-scale study. DIAS Report, Plant Production, 129-131.
Luth R.P., Germain P., Lecomte M., Landrain B., Li Y., Cluzeau D. Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresour. Technol. 2011, 102:3679-3686.
Misselbrook T.H., Chadwick D.R., Pain B.F., Headon D.M. Dietary manipulation as a means of decreasing N losses and methane emissions and improving herbage N uptake following application of pig slurry to grassland. J. Agric. Sci. 1998, 130:183-191.
Misselbrook T.H., Powell J.M. Influence of bedding material on ammonia emissions from cattle excreta. J. Dairy Sci. 2005, 88:4304-4312.
Moehn S., Atakora J., Sands J., Ball R. Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing-finishing pigs fed ad libitum. Livestock Sci. 2007, 109:271-274.
Moehn S., Bertolo R., Pencharz P., Ball R. Pattern of carbon dioxide production and retention is similar in adult pigs when fed hourly, but not when fed a single meal. BMC Physiol. 2004, 4:11.
Moller H.B., Sommer S.G., Ahring B.K. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J. Environ. Qual. 2004, 33:27-36.
Monteny G.J., Bannink A., Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ. 2006, 112:163-170.
Müller W., Schneider B. Heat: water vapour and CO2 production in dairy cattle and pig housing. Part 1. Provisional planning data for the use of heat exchangers and heat pumps in livestock housing. Tieräztliche Umschau 1985, 40:274-280.
Ngwabie N.M., Jeppsson K.H., Nimmermark S., Gustafsson G. Effects of animal and climate parameters on gas emissions from a barn for fattening pigs. Appl. Eng. Agric. 2011, 27:1027-1037.
Ni J.Q., Hendriks J., Coenegrachts J., Vinckier C. Production of carbon dioxide in a fattening pig house under field conditions I. Exhalation by pigs. Atmos. Environ. 1999, 33:3691-3696.
Ni J.Q., Vinckier C., Coenegrachts J., Hendriks J. Effect of manure on ammonia emission from a fattening pig house with partly slatted floor. Livestock Prod. Sci. 1999, 59:25-31.
Ni J.-Q., Heber A.J., Lim T.T., Tao P.C., Schmidt A.M. Methane and carbon dioxide emission from two pig finishing barns. J. Environ. Qual. 2008, 37:2001-2011.
Nicks B. Technical characteristics and environmental aspects of breeding fattening pigs and weaned piglets on accumulated litters. Ann. Méd. Vét. 2004, 148:31-38.
Nicks B., Laitat M., Farnir F., Vandenheede M., Desiron A., Verhaeghe C., Canart B. Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs. Anim. Sci. 2004, 78:99-107.
Nicks B., Laitat M., Vandenheede M., Desiron A., Verhaeghe C., Canart B. Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdust-based deep litters. Anim. Res. 2003, 52:299-308.
Nicks B., Philippe F.X., Laitat M., Farnir F., Canart B., Vandenheede M. Gaseous emissions in the raising of fattening pigs on fully slatted-floor or on straw-based deep litter. Animal and Environment 2005, 373-377. ISAH, Warsaw, Poland. A. Krynski, R. Wrzesien (Eds.).
Noblet J., Fortune H., Shi X., Dubois S. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 1994, 72:344-354.
Noblet J., Dourmad J.Y., Le Dividich J., Dubois S. Effect of ambient temperature and addition of straw or alfalfa in the diet on energy metabolism in pregnant sows. Livestock Prod. Sci. 1989, 21:309-324.
O'Shea C.J., Sweeney T., Lynch M.B., Gahan D.A., Callan J.J., O'Doherty J.V. Effect of beta-glucans contained in barley- and oat-based diets and exogenous enzyme supplementation on gastrointestinal fermentation of finisher pigs and subsequent manureodor and ammonia emissions. J. Anim. Sci. 2010, 88:1411-1420.
Oenema O., Wrage N., Velthof G., Groenigen J.W., Dolfing J., Kuikman P. Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycling Agroecosyst. 2005, 72:51-65.
Olesen C.S., Jorgensen H. Effect of dietary fibre on digestibility and energy metabolism in pregnant sows. Acta Agric. Scand. Sect. A: Anim. Sci. 2001, 51:200-207.
Osada T., Rom H.B., Dahl P. Continuous measurement of nitrous oxide and methane emission in pig units by infrared photoacoustic detection. Trans. ASAE 1998, 41:1109-1114.
Osada T., Takada R., Shinzato I. Potential reduction of greenhouse gas emission from swine manure by using a low-protein diet supplemented with synthetic amino acids. Anim. Feed Sci. Technol. 2011, 166:562-574.
Paillat J.-M., Robin P., Hassouna M., Leterme P. Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos. Environ. 2005, 39:6833-6842.
Palkovicova Z., Knizatova M., Mihina S., Broucek J., Hanus A. Emissions of greenhouse gases and ammonia from intensive pig breeding. Folia Vet. 2009, 53:168-170.
Pedersen S., Blanes-Vidal V., Jørgensen H., Chwalibog A., Haeussermann A., Heetkamp M., Aarnink A. Carbon dioxide production in animal houses: a literature review. Agric. Eng. Int.: CIGR J. X 2008, Manuscript BC 08 008.
Pelletier N., Lammers P., Stender D., Pirog R. Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States. Agric. Syst. 2010, 103:599-608.
Pepple, L., Burns, R., Xin H., Li, H., Patience, J., 2011. Ammonia, hydrogen sulfide, and greenhouse gas emissions from wean-to-finish swine barns fed diets with or without DDGS. Agric. Biosyst. Eng. Conference Papers, Posters and Presentations. Paper 138.
Petersen S.O., Miller D.N. Greenhouse gas mitigation by covers on livestock slurry tanks and lagoons. J. Sci. Food Agric. 2006, 86:1407-1411.
Philippe F.X., Cabaraux J.F., Laitat M., Stilmant D., Wavreille J., Nicks B. Les Impacts Environnementaux Du Choix Des Modalités D'hébergement Des Porcs Charcutiers 2013, University of Liège, Liège, Belgium, and Walloon Agricultural Research Centre, Gembloux, Belgium.
Philippe F.X., Cabaraux J.F., Nicks B. Ammonia emissions from pig houses: influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141:245-260.
Philippe F.X., Canart B., Laitat M., Wavreille J., Bartiaux-Thill N., Nicks B., Cabaraux J.F. Effects of available surface on gaseous emissions from group-housed gestating sows kept on deep litter. Animal 2010, 4:1716-1724.
Philippe F.X., Canart B., Laitat M., Wavreille J., Vandenheede M., Bartiaux-Thill N., Nicks B., Cabaraux J.F. Gaseous emissions from group-housed gestating sows kept on deep litter and offered an ad libitum high-fibre diet. Agric. Ecosyst. Environ. 2009, 132:66-73.
Philippe F.X., Laitat M., Canart B., Farnir F., Massart L., Vandenheede M., Nicks B. Effects of a reduction of diet crude protein content on gaseous emissions from deep-litter pens for fattening pigs. Anim. Res. 2006, 55:397-407.
Philippe F.X., Laitat M., Canart B., Vandenheede M., Nicks B. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs: kept either on fully slatted floor or on deep litter. Livestock Sci. 2007, 111:144-152.
Philippe F.X., Laitat M., Canart B., Vandenheede M., Nicks B. Gaseous emissions during the fattening of pigs kept either on fully slatted floors or on straw flow. Animal 2007, 1:1515-1523.
Philippe F.X., Laitat M., Nicks B., Cabaraux J.F. Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agric. Ecosyst. Environ. 2012, 150:45-53.
Philippe F.X., Laitat M., Vandenheede M., Canart B., Nicks B. Comparison of zootechnical performances and nitrogen contents of effluent for fattening pigs kept either on slatted floor or on straw-based deep litter. Ann. Méd. Vét. 2006, 150:137-144.
Philippe F.X., Laitat M., Wavreille J., Bartiaux-Thill N., Nicks B., Cabaraux J.F. Ammonia and greenhouse gas emission from group-housed gestating sows depends on floor type. Agric. Ecosyst. Environ. 2011, 140:498-505.
Philippe F.X., Laitat M., Wavreille J., Bartiaux-Thill N., Nicks B., Cabaraux J.F. Effets des fibres et du type de sol sur les émissions de gaz à effet de serre et d'ammoniac associées à l'élevage de truies. Journées Rech. Porcine 2012, 44:133-134.
Philippe F.X., Laitat M., Wavreille J., Nicks B., Cabaraux J.F. Ammonia and greenhouse gases emissions associated to fattening pigs kept either on fully or partly slatted floor. Journées Rech. Porcine 2014, 46:211-212.
Philippe F.X., Laitat M., Wavreille J., Nicks B., Cabaraux J.F. Effects of the amount of straw on ammonia and greenhouse gases emissions associated to fattening pigs kept on deep litter. Journées Rech. Porcine 2014, 46:213-214.
Philippe F.X., Remience V., Dourmad J.Y., Cabaraux J.F., Vandenheede M., Nicks B. Food fibers in gestating sows: effects on nutrition behaviour, performances and waste in the environment. INRA Prod. Anim. 2008, 21:277-290.
Pineiro C., Montalvo G., Garcia M.A., Bigeriego M. Influence of Soya Bean Meal and Synthetics Amino Acids Prices in the Cost of Nutritional Best Available Techniques in Spain. In: Book of Abstracts of the 60th Annual Meeting of the European Association for Animal Production 2009, Wageningen Academic Publishers, Wageningen, The Netherlands, p. 327.
Poth M., Focht D.D. N-15 kinetic-analysis of N2O production by nitrosomonas-europaea - an examination of nitrifier denitrification. Appl. Environ. Microbiol. 1985, 49:1134-1141.
Quiniou N., Dubois S., Noblet J. Effect of dietary crude protein level on protein and energy balances in growing pigs: comparison of two measurement methods. Livestock Prod. Sci. 1995, 41:51-61.
Ramonet Y., van Milgen J., Dourmad J.Y., Dubois S., Meunier-Salaun M.C., Noblet J. The effect of dietary fibre on energy utilisation and partitioning of heat production over pregnancy in sows. Brit. J. Nutr. 2000, 84:85-94.
Rigolot C., Espagnol S., Robin P., Hassouna M., Beline F., Paillat J.M., Dourmad J.Y. Modelling of manure production by pigs and NH3 N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices. Animal 2010, 4:1413-1424.
Robin P., de Oliveira P.A., Kermarrec C. Ammonia: nitrous oxide and water emissions from pigs housed on several types of litter during the growing period. Journées Rech. Porcine 1999, 31:111-115.
Rodhe L.K.K., Abubaker J., Ascue J., Pell M., Nordberg T. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosyst. Eng. 2012, 113:379-394.
Schrama J.W., Bosch M.W., Verstegen M.W.A., Vorselaars A., Haaksma J., Heetkamp M.J.W. The energetic value of nonstarch polysaccharides in relation to physical activity in group-housed, growing pigs. J. Anim. Sci. 1998, 76:3016-3023.
Serena A., Jorgensen H., Bach Knudsen K.E. Digestion of carbohydrates and utilization of energy in sows fed diets with contrasting levels and physicochemical properties of dietary fiber. J. Anim. Sci. 2008, 86:2208-2216.
Shah S.B., Kolar P. Evaluation of additive for reducing gaseous emissions from swine waste. Agric. Eng. Int.: CIGR J. 2012, 14:10-20.
Sommer S.G. Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur. J. Agron. 2001, 14:123-133.
Sommer S.G., Moller H.B. Emission of greenhouse gases during composting of deep litter from pig production - effect of straw content. J. Agric. Sci. 2000, 134:327-335.
Sommer S.G., Petersen S.O., Moller H.B. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycling Agroecosyst. 2004, 69:143-154.
Sommer S.G., Petersen S.O., Sorensen P., Poulsen H.D., Moller H.B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycling Agroecosyst. 2007, 78:27-36.
Stanier R.Y., Ingraham J.L., Wheelis M.L., Painter P.R. The Microbial World 1986, Prentice-Hall, New Jersey. fifth ed.
Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales C., de Haan C. Livestock's Long Shadow: Environmental Issues and Options 2006, Food and Agriculture Organization of the United Nations, Rome, Italy.
Stinn, J.P., Xin H., Li, H., Shepherd, T., Burns, R., 2011. Quantification of greenhouse gas and ammonia emissions from a Midwestern swine breeding/gestation/farrowing facility. Agric. Biosyst. Eng. Conference Papers, Posters and Presentations. Paper 203.
Sun G., Guo H.Q., Peterson J., Predicala B., Lague C. Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms. J. Air Waste Manage. Assoc. 2008, 58:1434-1448.
Szanto G.L., Hamelers H.M., Rulkens W.H., Veeken A.H.M. NH3: N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour. Technol. 2007, 98:2659-2670.
Tsukahara T., Azuma Y., Ushida K. The effect of a mixture of live lactic acid bacteria on intestinal gas production in pigs. Microb. Ecol. Health D 2001, 13:105-110.
Van Milgen J., Noblet J., Dubois S., Bernier J.F. Dynamic aspects of oxygen consumption and carbon dioxide production in swine. Br. J. Nutr. 1997, 78:397-410.
Van der Zaag A.C., Gordon R.J., Glass V.M., Jamieson R.C. Floating cover to reduce gas emissions from liquid manure storage: a review. Appl. Eng. Agric. 2008, 24:657-671.
van 't Klooster C., Heitlager B. Determination of minimum ventilation rate in pig houses with natural ventilation based on carbon dioxide balance. J. Agric. Eng. Res. 1994, 57:279-287.
Vedrenne F., Béline F., Dabert P., Bernet N. The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresour. Technol. 2008, 99:146-155.
Velthof G.L., Nelemans J.A., Oenema O., Kuikman P.I. Gaseous nitrogen and carbon losses from pig manure derived from different diets. J. Environ. Qual. 2005, 34:698-706.
Vergé X.P.C., Dyer J.A., Desjardins R.L., Worth D. Greenhouse gas emissions from the Canadian pork industry. Livestock Sci. 2009, 121:92-101.
Vermorel M., Jouany J.P., Eugène M., Sauvant D., Noblet J., Dourmad J.Y. Evaluation quantitative des émissions de méthane entérique par les animaux d'élevage en 2007 en France. INRA Prod. Anim. 2008, 21:403-418.
Wang J., Zhu Y., Li D., Jørgensen H., Jensen B. The influence of different fiber and starch types on nutrient balance and energy metabolism in growing pigs. Asian-Aust. J. Anim. Sci. 2004, 17:263-270.
Weiss F., Leip A. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 2012, 149:124-134.
Wolter M., Prayitno S., Schuchardt F. Greenhouse gas emission during storage of pig manure on a pilot scale. Bioresour. Technol. 2004, 95:235-244.
Yamulki S. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agric. Ecosyst. Environ. 2006, 112:140-145.
Ye Z., Zhang G., Seo I.H., Kai P., Saha C.K., Wang C., Li B. Airflow characteristics at the surface of manure in a storage pit affected by ventilation rate floor slat opening, and headspace height. Biosyst. Eng. 2009, 104:97-105.
Zhang Q., Zhou X.J., Cicek N., Tenuta M. Measurement of odour and greenhouse gas emissions in two swine farrowing operations. Can. Biosyst. Eng. 2007, 49:6.13-6.20.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.