[en] Euglena gracilis is a secondary green alga related to trypanosomes that derives from a secondary endosymbiosis between a phagotrophic ancestor and a prasinophycean green alga. Our general objective is to study the metabolic interactions established between the secondary plastid and the mitochondrion after the endosymbiotic event and to determine the phylogenetic origin of the genes encoding the proteins involved in the energetic pathways. As a first step, we analysed the subunit composition of the mitochondrial respiratory chain, both in silico and by targeted proteomics, to assess the extent of its similitude with the respiratory chain of Trypanosomatidae. We have shown that Euglena shares many additional subunits with trypanosomes, which suggests that these subunits are not especially associated to a parasitic lifestyle. As a second step, we sequenced the total transcriptome of Euglena and determined the phylogenetic origin of each predicted transcript using a database of about 1000 complete proteomes representing the diversity of life. These analyses confirmed that Euglena recruited its genes from a very diverse set of sources. As a third step, we performed a high-throughput analysis of the mitochondrial proteome of Euglena. Our MS/MS experiments, taking advantage of the availability of our transcriptome, mostly recovered mitochondrial proteins, which indicates that our mitochondrial extracts were quite pure. The identified proteins encompassed about 15 different mitochondrial pathways. We are now in the process of comparing the expression levels of both the transcripts and the corresponding proteins across a range of culture conditions selected to differently stimulate the mitochondrion and the plastid.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Perez, Emilie ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues