[en] We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ˜330% rigid corotation from near ˜01 h LT toward ˜08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Nichols, J. D.; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Badman, S. V.; Department of Physics and Astronomy, University of Leicester, Leicester, UK ; Department of Physics, Lancaster University, Lancaster, UK
Baines, K. H.; Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin USA
Brown, R. H.; Lunar and Planetary Lab, University of Arizona, Tucson, Arizona USA
Bunce, E. J.; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Clarke, J. T.; Center for Space Physics, Boston University, Boston, Massachusetts USA
Cowley, S. W. H.; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Crary, F. J.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado USA
Dougherty, M. K.; Blackett Laboratory, Imperial College London, London, UK
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Grocott, A.; Department of Physics and Astronomy, University of Leicester, Leicester, UK ; Department of Physics, Lancaster University, Lancaster, UK
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kurth, W. S.; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa USA
Melin, H.; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Mitchell, D. G.; Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland USA
Pryor, W. R.; Department of Science, Central Arizona College, Coolidge, Arizona USA
Stallard, T. S.; Department of Physics and Astronomy, University of Leicester, Leicester, UK)
Arridge, C., et al. (2011), Upstream of Saturn and Titan, Space Sci. Rev., 162 (1-4), 25-83.
Badman, S.V., E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, and, S.E. Milan, (2005), Open flux estimates in Saturn's magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates, J. Geophys. Res., 110, A11216, doi: 10.1029/2005JA011240.
Belenkaya, E.S., S.W.H. Cowley, J.D. Nichols, M.S. Blokhina, and, V.V. Kalegaev, (2011), Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model, Ann. Geophys., 29, 1233-1246, doi: 10.5194/angeo-29-1233-2011.
Birmingham, T.J., (1982), Charged particle motions in the distended magnetospheres of Jupiter and Saturn, J. Geophys. Res., 87 (A9), 7421-7430, doi: 10.1029/JA087iA09p07421.
Burton, M., M. Dougherty, and, C. Russell, (2010), Saturn's internal planetary magnetic field, Geophys. Res. Lett., 37, L24105, doi: 10.1029/2010GL045148.
Carbary, J.F., K. Liou, A.T.Y. Lui, P.T. Newell, and, C.I. Meng, (2000), "Blob" analysis of auroral substorm dynamics, J. Geophys. Res., 105 (A7), 16,083-16,091.
Clarke, J. T., et al. (2005), Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter, Nature, 433 (7027), 717-719, doi: 10.1038/nature03331.
Clarke, J. T., et al. (2009), The response of Jupiter's and Saturn's auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi: 10.1029/2008JA013694.
Cowley, S.W.H., and, G. Provan, (2013), Saturn's magnetospheric planetary period oscillations, neutral atmosphere circulation, and thunderstorm activity: Implications, or otherwise, for physical links, J. Geophys. Res. Space Physics, 118, 7246-7261, doi: 10.1002/2013JA019200.
Cowley, S.W.H., S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. Gérard, D. Grodent, C.M. Jackman, S.E. Milan, and, T.K. Yeoman, (2005), Reconnection in a rotation-dominated magnetosphere and its relation to Saturn's auroral dynamics, J. Geophys. Res., 110, A02201, doi: 10.1029/2004JA010796.
Crary, F. J., et al. (2005), Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae, Nature, 433 (7027), 720-722, doi: 10.1038/nature03333.
Gérard, J.-C., B. Bonfond, J. Gustin, D. Grodent, J.T. Clarke, D. Bisikalo, and, V. Shematovich, (2009), Altitude of Saturn's aurora and its implications for the characteristic energy of precipitated electrons, Geophys. Res. Lett., 36, L02202, doi: 10.1029/2008GL036554.
Grodent, D., J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, and, J.T. Clarke, (2005), Variable morphology of Saturn's southern ultraviolet aurora, J. Geophys. Res., 110, A07215, doi: 10.1029/2004JA010983.
Gustin, J., B. Bonfond, D. Grodent, and, J.C. Gérard, (2012), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets, J. Geophys. Res., 117, A07316, doi: 10.1029/2012JA017607.
Jackman, C.M., N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, and, W.R. Pryor, (2013), Auroral counterpart of magnetic field dipolarizations in Saturn's tail, Planet. Space Sci., 82, 34-42, doi: 10.1016/j.pss.2013.03.010.
Kanani, S., et al. (2010), A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements, J. Geophys. Res., 115, A06207, doi: 10.1029/2009JA014262.
Lyons, L., T. Nagai, G. Blanchard, J. Samson, T. Yamamoto, T. Mukai, A. Nishida, and, S. Kokubun, (1999), Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers, J. Geophys. Res., 104 (A3), 4485-4500.
McAndrews, H. J., et al. (2009), Plasma in Saturn's nightside magnetosphere and the implications for global circulation, Planet. Space Sci., 57, 1714-1722.
Mitchell, D., et al. (2005), Energetic ion acceleration in Saturn's magnetotail: Substorms at Saturn?, Geophys. Res. Lett., 32, L20S01, doi: 10.1029/2005GL022647.
Mitchell, D., et al. (2009), Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions, Planet. Space Sci., 57, 1732-1742, doi: 10.1016/j.pss.2009.04.002.
Nichols, J. D., et al. (2009), Saturn's equinoctial auroras, Geophys. Res. Lett., 36, L24102, doi: 10.1029/2009GL041491.
Prangé, R., L. Pallier, K.C. Hansen, R. Howard, A. Vourlidas, G. Courtin, and, C. Parkinson, (2004), An interplanetary shock traced by planetary auroral storms from the Sun to Saturn, Nature, 432 (7013), 78-81, doi: 10.1038/nature02986.
Stallard, T.S., A. Masters, S. Miller, H. Melin, E.J. Bunce, C.S. Arridge, N. Achilleos, M.K. Dougherty, and, S.W. Cowley, (2012), Saturn's auroral/polar H 3 + infrared emission: The effect of solar wind compression, J. Geophys. Res., 117, A12302, doi: 10.1029/2012JA018201.
Thomsen, M., D. Reisenfeld, D. Delapp, R. Tokar, D. Young, F. Crary, E. Sittler, M. McGraw, and, J. Williams, (2010), Survey of ion plasma parameters in Saturn's magnetosphere, J. Geophys. Res., 115, A10220, doi: 10.1029/2010JA015267.