[en] Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs) were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps). Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA) in patients diagnosed with acute respiratory distress syndrome (ARDS). A scaling factor (alpha) was used to equate the area under the pressure curve (AUC) from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median alpha value of 0.58 (IQR: 0.54-0.63; range: 0.45-0.66) for these ARDS patients. Significantly lower alpha values were found for individuals with chronic obstructive pulmonary disease (P < 0.001). Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific alpha values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Damanhuri, Nor Salwa
Docherty, Paul D.
Chiew, Yeong Shiong
van Drunen, Erwin J.
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Chase, J. Geoffrey
Language :
English
Title :
A patient-specific airway branching model for mechanically ventilated patients.
Publication date :
2014
Journal title :
Computational and Mathematical Methods in Medicine
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. R. S. Carvalho, F. C. Jandre, A. V. Pino et al., "Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury," Critical Care, vol. 11, article R86, 2007.
L. Gattinoni, C. Eleonora, and P. Caironi, "Monitoring of pulmonary mechanics in acute respiratory distress syndrome to titrate therapy," Current Opinion in Critical Care, vol. 11, no. 3, pp. 252-258, 2005.
Z. Zhao, J. Guttmann, and K. Moller, "Adaptive Slice Method: a new method to determine volume dependent dynamic respiratory system mechanics," Physiological Measurement, vol. 33, pp. 51-64, 2012.
A. Sundaresan and J. G. Chase, "Positive end expiratory pressure in patients with acute respiratory distress syndrome-the past, present and future," Biomedical Signal Processing and Control, vol. 7, no. 2, pp. 93-103, 2012.
O. Stenqvist, H. Odenstedt, and S. Lundin, "Dynamic respiratory mechanics in acute lung injury/acute respiratory distress syndrome: research or clinical tool?" Current Opinion in Critical Care, vol. 14, no. 1, pp. 87-93, 2008.
Y. S. Chiew, J. G. Chase, G. M. Shaw, A. Sundaresan, and T. Desaive, "Model-based PEEP optimisation in mechanical ventilation," BioMedical Engineering Online, vol. 10, article 111, 2011.
K. Horsfield, G. Dart, D. E. Olson, G. F. Filley, and G. Cumming, "Models of the human bronchial tree," Journal of Applied Physiology, vol. 31, no. 2, pp. 207-217, 1971.
E. R. Weibel, "Morphometry of the human lung," 1963.
T. T. Soong, P. Nicolaides, C. P. Yu, and S. C. Soong, "A statistical description of the human tracheobronchial tree geometry," Respiration Physiology, vol. 37, no. 2, pp. 161-172, 1979.
K. S. Burrowes, P. J. Hunter, and M. H. Tawhai, "Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels," Journal of Applied Physiology, vol. 99, no. 2, pp. 731-738, 2005.
I. M. Katz, A. R. Martin, C. Feng et al., "Airway pressure distribution during xenon anesthesia: the insufflation phase at constant flow (volume controlled mode)," Applied Cardiopulmonary Pathophysiology, vol. 16, no. 1, pp. 5-16, 2012.
T. J. Pedley, R. C. Schroter, and M. F. Sudlow, "The prediction of pressure drop and variation of resistance within the human bronchial airways," Respiration Physiology, vol. 9, no. 3, pp. 387-405, 1970.
I. M. Katz, A. R. Martin, P. Muller et al., "The ventilation distribution of helium-oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions," Journal of Biomechanics, vol. 44, no. 6, pp. 1137-1143, 2011.
S. Kárason, S. SØndergaard, S. Lundin, J. Wlklund, and O. Stenqvist, "A new method for non-invasive, manoeuvre-free determination of "static" pressure-volume curves during dynamic/therapeutic mechanical ventilation," Acta Anaesthesiologica Scandinavica, vol. 44, no. 5, pp. 578-585, 2000.
S. Sondergaard, S. Kárason, J. Wiklund, S. Lundin, and O. Stenqvist, "Alveolar pressure monitoring: an evaluation in a lung model and in patients with acute lung injury," Intensive Care Medicine, vol. 29, no. 6, pp. 955-962, 2003.
G. Mols, H.-J. Priebe, and J. Guttmann, "Alveolar recruitment in acute lung injury," British Journal of Anaesthesia, vol. 96, no. 2, pp. 156-166, 2006.
S. Kárason, S. Søndergaard, S. Lundin, J. Wiklund, and O. Stenqvist, "Direct tracheal airway pressure measurements are essential for safe and accurate dynamic monitoring of respiratory mechanics. A laboratory study," Acta Anaesthesiologica Scandinavica, vol. 45, no. 2, pp. 173-179, 2001.
A. Sundaresan, J. G. Chase, G. M. Shaw, Y. S. Chiew, and T. Desaive, "Model-based optimal PEEP in mechanically ventilated ARDS patients in the Intensive Care Unit," BioMedical Engineering Online, vol. 10, article 64, 2011.
A. Sundaresan, J. G. Chase, G. M. Shaw, Y. S. Chiew, and T. Desaive, "Model-based optimal PEEP in mechanically ventilated ARDS patients in the intensive care unit," BioMedical Engineering Online, vol. 10, article 64, 2011.
N. S. Damanhuri, Y. S. Chiew, P. Docherty, P. Geoghegan, and G. Chase, "Respiratory airway resistance monitoring in mechanically ventilated patients," in Proceedings of the 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES '12), pp. 311-315, December 2012.
K. Horsfield and M. J. Woldenberg, "Diameters and cross-sectional areas of branches in the human pulmonary arterial tree," Anatomical Record, vol. 223, no. 3, pp. 245-251, 1989.
A. Sundaresan, Applications of model-based lung mechanics in the intensive care unit [Ph.D. thesis], Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 2010.
C. Straus, B. Louis, D. Isabey, F. Lemaire, A. Harf, and L. Brochard, "Contribution of the endotracheal tube and the upper airway to breathing workload," American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 23-30, 1998.
B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics, John Wiley & Sons, New York, NY, USA, 1990.
S. Sondergaard, S. Kárason, A. Hanson et al., "The dynostatic algorithm accurately calculates alveolar pressure on-line during ventilator treatment in children," Paediatric Anaesthesia, vol. 13, no. 4, pp. 294-303, 2003.
J. M. Halter, J. M. Steinberg, L. A. Gatto et al., "Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability," Critical Care, vol. 11, no. 1, article R20, 2007.
J. H. T. Bates, Lung Mechanics an Inverse Modelling Approach, vol. 1, Cambridge University Press, New York, NY, USA, 2009.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.