[en] Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic structures. The interactions between bioactive molecules and lipids are important for numerous processes, from drug bioavailablility to viral fusion. The cell membrane is a carefully balanced environment and any change inflicted upon its structure by a bioactive molecule must be considered in conjunction with the overall effect that this may have on the function and integrity of the membrane. Conceptually, understanding the molecular mechanisms by which bioactive molecules interact with cell membranes is of fundamental importance.
Lipid specificity is a key factor for the detailed understanding of the penetration and/or activity of lipid-interacting molecules and of mechanisms of some diseases. Further investigation in that way should improve drug discovery and development of membrane-active molecules in many domains such as health, plant protection or microbiology.
In this review, we will present complementary biophysical approaches that can give information about lipid specificity at a molecular point of view. Examples of application will be given for different molecule types, from biomolecules to pharmacological drugs. A special emphasis is given to cyclic lipopeptides since they are interesting molecules in the scope of this review by combining a peptidic moiety and a lipidic tail and by exerting their activity via specific interactions with the plasma membrane.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Deleu, Magali ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Crowet, Jean-Marc ; Université de Liège - ULiège > Chimie et bio-industries > Biophysique moléc. numér.
Nasir, Mehmet Nail ; Université de Liège - ULiège > Chimie et bio-industries > Chimie générale et organique
Lins, Laurence ; Université de Liège - ULiège > Chimie et bio-industries > Biophysique moléc. numér.
Language :
English
Title :
Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review
Publication date :
2014
Journal title :
Biochimica et Biophysica Acta. Biomembranes
ISSN :
0005-2736
Publisher :
Elsevier Science
Volume :
1838
Pages :
3171-3190
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FIELD Project Belgian Program on Interuniversity Attraction Poles
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
F. Furt, F. Simon-Plas, S. Mongrand, The Plant Plasma Membrane, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011., http://dx.doi.org/10.1007/978-3-642-13431-9.
G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol. 9 (2008) 112-124, http://dx.doi.org/10.1038/nrm2330.
A.M. Seddon, D. Casey, R.V. Law, A. Gee, R.H. Templer, O. Ces, Drug interactions with lipid membranes, Chem. Soc. Rev. 38 (2009) 2509-2519.
M.A. Sani, F. Separovic, J.D. Gehman, The lipid network, Biophys. Rev. 4 (2012) 283-290.
K. Lohner, E.J. Prenner, Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems, Biochim. Biophys. Acta (BBA) 1462 (1999) 141-156.
J.S. Owen, K.R. Bruckdorfer, R.C. Day, N. McIntyre, Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease, J. Lipid Res. 23 (1982) 124-132.
S. Sahu, W.S. Lynn, Lipid composition of human alveolar macrophages, Inflammation 2 (1977) 83-91, http://dx.doi.org/10.1007/BF00918670.
D.R. Voelker, Lipid assembly into cell membranes, in: J.E. Vance, D. Vance (Eds.), 4th ed., Biochem. Lipids, Lipoproteins Membr., 2002, pp. 449-482.
T. Heimburg, Thermal Biophysics of Membranes, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007., http://dx.doi.org/10.1002/9783527611591.
K. Schrick, U. Mayer, G. Martin, C. Bellini, C. Kuhnt, J. Schmidt, et al., Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis, Plant J. 31 (2002) 61-73, http://dx.doi.org/10.1046/j.1365-313X.2002.01333.x.
P. Benveniste, Biosynthesis and accumulation of sterols, Annu. Rev. Plant Biol. 55 (2004) 429-457, http://dx.doi.org/10.1146/annurev.arplant.55.031903.141616.
J.-L. Cacas, F. Furt, M. Le Guédard, J.-M. Schmitter, C. Buré, P. Gerbeau-Pissot, et al., Lipids of plant membrane rafts, Prog. Lipid Res. 51 (2012) 272-299, http://dx.doi.org/10.1016/j.plipres.2012.04.001.
C. Buré, J.-L. Cacas, S.Mongrand, J.-M. Schmitter, Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry, Anal. Bioanal. Chem. 406 (2014) 995-1010, http://dx.doi.org/10.1007/s00216-013-7130-8.
C. Buré, J.-L. Cacas, F. Wang, K. Gaudin, F. Domergue, S. Mongrand, et al., Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry, Rapid Commun. Mass Spectrom. 25 (2011) 3131-3145, http://dx.doi.org/10.1002/rcm.5206.
R.C. Dickson, E.E. Nagiec, G.B. Wells, M.M. Nagiec, R.L. Lester, Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene, J. Biol. Chem. 272 (1997) 29620-29625, http://dx.doi.org/10.1074/jbc.272.47.29620.
G. Daum, G. Tuller, T. Nemec, C. Hrastnik, G. Balliano, L. Cattel, et al., Systematic analysis of yeast strains with possible defects in lipid metabolism, Yeast 15 (1999) 601-614, http://dx.doi.org/10.1002/(SICI)1097-0061(199905)15:7b601::AID-YEA390N3.0.CO;2-N.
G.M. Carman, G.M. Zeimetz, Regulation of phospholipid biosynthesis in the YEast Saccharomyces cerevisiae, J. Biol. Chem. 271 (1996) 13293-13296, http://dx.doi.org/10.1074/jbc.271.23.13293.
R.M. Epand, R.F. Epand, Bacterial membrane lipids in the action of antimicrobial agents, J. Pept. Sci. 17 (2011) 298-305, http://dx.doi.org/10.1002/psc.1319.
R.F. Epand, P.B. Savage, R.M. Epand, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins), Biochim. Biophys. Acta 1768 (2007) 2500-2509, http://dx.doi.org/10.1016/j.bbamem.2007.05.023.
K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387 (1997) 569-572, http://dx.doi.org/10.1038/42408.
K. Simons, J.L. Sampaio, Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol. 3 (2011) a004697, http://dx.doi.org/10.1101/cshperspect.a004697.
P.F.F. Almeida, A. Pokorny, A. Hinderliter, Thermodynamics of membrane domains, Biochim. Biophys. Acta 1720 (2005) 1-13, http://dx.doi.org/10.1016/j.bbamem.2005.12.004.
T.G. Pomorski, T. Nylander, M. Cárdenas, Model cell membranes: discerning lipid and protein contributions in shaping the cell, Adv. Colloid Interf. Sci. 205C (2014) 207-220, http://dx.doi.org/10.1016/j.cis.2013.10.028.
B.P. Head, H.H. Patel, P.A. Insel, Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function:membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling, Biochim. Biophys. Acta 1838 (2014) 532-545.
L. D'Auria, M. Fenaux, P. Aleksandrowicz, P. Van Der Smissen, C. Chantrain, C. Vermylen, et al., Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes, J. Lipid Res. 54 (2013) 1066-1076, http://dx.doi.org/10.1194/jlr.M034314.
L. D'auria, P. Van der Smissen, F. Bruyneel, P.J. Courtoy, D. Tyteca, Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids? PLoS One 6 (2011) e17021, http://dx.doi.org/10.1371/journal.pone.0017021.
C. Peetla, A. Stine, V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery, Mol. Pharm. 6 (2009) 1264-1276.
M. Eeman, M. Deleu, From biological membranes to biomimetic model membranes, Biotechnol. Agron. Soc. Environ. 14 (2010) 719-736.
R. Maget-Dana, The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes, Biochim. Biophys. Acta Biomembr. 1462 (1999) 109-140, http://dx.doi.org/10.1016/S0005-2736(99)00203-5.
G. Brezesinski, H. Möhwald, Langmuir monolayers to study interactions at model membrane surfaces, Adv. Colloid Interf. Sci. 100-102 (2003) 563-584, http://dx.doi.org/10.1016/S0001-8686(02)00071-4.
M. Eeman, M. Deleu, Des membranes biologiques aux modèles membranaires biomimétiques, Biotechnol. Agron. Soc. Environ. 14 (2010) 719-736.
C. Rossi, J. Chopineau, Biomimetic tethered lipid membranes designed for membrane-protein interaction studies, Eur. Biophys. J. 36 (2007) 955-965, http://dx.doi.org/10.1007/s00249-007-0202-y.
F. Tiberg, I. Harwigsson, M. Malmsten, Formation of model lipid bilayers at the silica-water interface by co-adsorption with non-ionic dodecyl maltoside surfactant, Eur. Biophys. J. 29 (2000) 196-203.
H.P. Vacklin, F. Tiberg, R.K. Thomas, Formation of supported phospholipid bilayers via co-adsorption with beta-D-dodecyl maltoside, Biochim. Biophys. Acta 1668 (2005) 17-24, http://dx.doi.org/10.1016/j.bbamem.2004.11.001.
C. Lee, H.Wacklin, C.D. Bain, Changes in molecular composition and packing during lipid membrane reconstitution from phospholipid-surfactant micelles, Soft Matter 5 (2009) 568, http://dx.doi.org/10.1039/b812768a.
J.Y. Wong, J. Majewski, M. Seitz, C.K. Park, J.N. Israelachvili, G.S. Smith, Polymer-cushioned bilayers. I. A structural study of various preparationmethods using neutron reflectometry, Biophys. J. 77 (1999) 1445-1457.
D. Alex, Methods in Membrane Lipids, Humana Press, New Jersey, 2007., http://dx.doi.org/10.1385/1597455199.
M.-P.Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrêne, Atomic force microscopy of supported lipid bilayers, Nat. Protoc. 3 (2008) 1654-1659, http://dx.doi.org/10.1038/nprot.2008.149.
E.I. Goksu, J.M. Vanegas, C.D. Blanchette, W.-C. Lin, M.L. Longo, AFM for structure and dynamics of biomembranes, Biochim. Biophys. Acta 1788 (2009) 254-266, http://dx.doi.org/10.1016/j.bbamem.2008.08.021.
Y.-H.M. Chan, S.G. Boxer, Model membrane systems and their applications, Curr. Opin. Chem. Biol. 11 (2007) 581-587, http://dx.doi.org/10.1016/j.cbpa.2007.09.020.
G. Puu, I. Gustafson, Planar lipid bilayers on solid supports from liposomes-factors of importance for kinetics and stability, Biochim. Biophys. Acta Biomembr. 1327 (1997) 149-161, http://dx.doi.org/10.1016/S0005-2736(97)00052-7.
C. Keller, B. Kasemo, Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance, Biophys. J. 75 (1998) 1397-1402, http://dx.doi.org/10.1016/S0006-3495(98)74057-3.
C.E. Miller, J. Majewski, T.L. Kuhl, Characterization of single biological membranes at the solid-liquid interface by X-ray reflectivity, Colloids Surf. A Physicochem. Eng. Asp. 284-285 (2006) 434-439, http://dx.doi.org/10.1016/j.colsurfa.2005.11.059.
H.P.Wacklin, R.K. Thomas, Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles, Langmuir 23 (2007) 7644-7651, http://dx.doi.org/10.1021/la063476q.
D.D. Lasic, On the thermodynamic stability of liposomes, J. Colloid Interface Sci. 140 (1990) 302-304.
H. Madani, E.W. Kaler, Aging and stability of vesicular dispersions, Langmuir 6 (1990) 125-132.
E.F. Marques, Size and Stability of Catanionic Vesicles: Effects of Formation Path, Sonication, and Aging, 2000. 4798-4807.
G. Gregoriadis, Overview of liposomes, J. Antimicrob. Chemother. (1991) 39-48.
B. Mui, L. Chow, M.J. Hope, Extrusion technique to generate liposomes of defined size, Methods Enzymol. 367 (2003) 3-14, http://dx.doi.org/10.1016/S0076-6879(03)67001-1.
M. Uhumwangho, R. Okor, Current trends in the production and biomedical applications of liposomes: a review, J. Med. Biomed. Res. 4 (2009), http://dx.doi.org/10.4314/jmbr.v4i1.10663.
A. Lorin, C. Flore, A. Thomas, R. Brasseur, Les liposomes: description, fabrication et applications, Biotechnol. Agron. Soc. Environ. 8 (2004) 163-176.
H. Bensikaddour, K. Snoussi, L. Lins, F. Van Bambeke, P.M. Tulkens, R. Brasseur, et al., Interactions of ciprofloxacin with DPPC and DPPG: fluorescence anisotropy, ATRFTIR and 31 P NMR spectroscopies and conformational analysis, BBA Biomembr. 1778 (2008) 2535-2543, http://dx.doi.org/10.1016/j.bbamem.2008.08.015.
H. Bensikaddour, N. Fa, I. Burton, M. Deleu, L. Lins, A. Schanck, et al., Characterization of the interactions between fluoroquinolone antibiotics and lipids: a multitechnique approach, Biophys. J. 94 (2008) 3035-3046, http://dx.doi.org/10.1529/biophysj.107.114843.
N. Fa, L. Lins, P.J. Courtoy, Y. Dufrêne, P. Van Der Smissen, R. Brasseur, et al., Decrease of elastic moduli of DOPC bilayers induced by a macrolide antibiotic, azithromycin, Biochim. Biophys. Acta 1768 (2007) 1830-1838, http://dx.doi.org/10.1016/j.bbamem.2007.04.013.
N. Fa, S. Ronkart, A. Schanck, M. Deleu, A. Gaigneaux, E. Goormaghtigh, et al., Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers, Chem. Phys. Lipids 144 (2006) 108-116, http://dx.doi.org/10.1016/j.chemphyslip.2006.08.002.
A. Berquand, M.-P. Mingeot-Leclercq, Y.F. Dufrêne, Real-time imaging of drug-membrane interactions by atomic force microscopy, Biochim. Biophys. Acta 1664 (2004) 198-205, http://dx.doi.org/10.1016/j.bbamem.2004.05.010.
C. Rodrigues, P. Gameiro, S. Reis, J.L.F. Lima, B. de Castro, Derivative spectrophotometry as a tool for the determination of drug partition coefficients in water/dimyristoyl-l-α-phosphatidylglycerol (DMPG) liposomes, Biophys. Chem. 94 (2001) 97-106, http://dx.doi.org/10.1016/S0301-4622(01)00227-7.
M. Baciu, S.C. Sebai, O. Ces, X. Mulet, J.A. Clarke, G.C. Shearman, et al., Degradative transport of cationic amphiphilic drugs across phospholipid bilayers, Philos. Trans. A. Math. Phys. Eng. Sci. 364 (2006) 2597-2614, http://dx.doi.org/10.1098/rsta.2006.1842.
W.I. Gruszecki, M. Gagos̈, M. Hereć, P. Kernen, Organization of antibiotic amphotericin B in model lipid membranes. A mini review, Cell. Mol. Biol. Lett. 8 (2003) 161-170.
M. Baginski, J. Czub, K. Sternal, Interaction of amphotericin B and its selected derivatives with membranes: molecular modeling studies, Chem. Rec. 6 (2006) 320-332, http://dx.doi.org/10.1002/tcr.20096.
I.M. Torcato, M.A.R.B. Castanho, S.T. Henriques, The application of biophysical techniques to study antimicrobial peptides, Spectrosc. An Int. J. 27 (2012) 541-549, http://dx.doi.org/10.1155/2012/460702.
S. Galdiero, A. Falanga, M. Cantisani, M. Vitiello, G. Morelli, M. Galdiero, Peptide-lipid interactions: experiments and applications, Int. J. Mol. Sci. 14 (2013) 18758-18789, http://dx.doi.org/10.3390/ijms140918758.
K. Lohner, New strategies for novel antibiotics: peptides targeting bacterial cell membranes, Gen. Physiol. Biophys. 28 (2009) 105-116, http://dx.doi.org/10.4149/gpb-2009-02-105.
M.U. Hammer, A. Brauser, C. Olak, G. Brezesinski, T. Goldmann, T. Gutsmann, et al., Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis, Biochem. J. 427 (2010) 477-488, http://dx.doi.org/10.1042/BJ20091607.
J.R. Brender, A.J. McHenry, A. Ramamoorthy, Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol. 3 (2012) 195, http://dx.doi.org/10.3389/fimmu.2012.00195.
G. Caracciolo, H. Amenitsch, Cationic liposome/DNA complexes: from structure to interactions with cellular membranes, Eur. Biophys. J. 41 (2012) 815-829, http://dx.doi.org/10.1007/s00249-012-0830-8.
C. Madeira, L.M.S. Loura, M.R. Aires-Barros, M. Prieto, Fluorescence methods for lipoplex characterization, Biochim. Biophys. Acta 1808 (2011) 2694-2705, http://dx.doi.org/10.1016/j.bbamem.2011.07.020.
H. Gao, Probing mechanical principles of cell-nanomaterial interactions, J. Mech. Phys. Solids 62 (2014) 312-339, http://dx.doi.org/10.1016/j.jmps.2013.08.018.
M. Schulz, A. Olubummo, W.H. Binder, Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes, Soft Matter 8 (2012) 4849, http://dx.doi.org/10.1039/c2sm06999g.
Y. Kim, Y. Kwak, R. Chang, Free energy of PAMAM dendrimer adsorption onto model biological membranes, J. Phys. Chem. B 118 (2014) 6792-6802, http://dx.doi.org/10.1021/jp501755k.
B. J.R., B.G. Orr, M.M.B. Holl, Nanoparticle interactions with biological membranes: dendrimers as experimental exemplars and a proposed physical mechanism, Nanotoxicology (2007) 456.
H. Lee, R.G. Larson, Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes, Molecules 14 (2009) 423-438, http://dx.doi.org/10.3390/molecules14010423.
A. A˚kesson, C.V. Lundgaard, N. Ehrlich, T.G. Pomorski, D. Stamou, M. Cárdenas, Induced dye leakage by PAMAM G6 does not imply dendrimer entry into vesicle lumen, Soft Matter 8 (2012) 8972, http://dx.doi.org/10.1039/c2sm25864a.
E. Amado, J. Kressler, Interactions of amphiphilic block copolymers with lipid model membranes, Curr. Opin. Colloid Interface Sci. 16 (2011) 491-498, http://dx.doi.org/10.1016/j.cocis.2011.07.003.
J.K.L. Mary, T. Le, E.J. Prenner, Biomimetic model membrane systems serve as increasingly valuable in vitro tools, in: Marko Cavrak (Ed.), Adv. Biomimetics, InTech, 2011, pp. 252-269, http://dx.doi.org/10.5772/574.
J. Miñones, S. Pais, O. Conde, P. Dynarowicz-Łatka, Interactions between membrane sterols and phospholipids in model mammalian and fungi cellular membranes - a Langmuir monolayer study, Biophys. Chem. 140 (2009) 69-77, http://dx.doi.org/10.1016/j.bpc.2008.11.011.
K. Boesze-Battaglia, R. Schimmel, Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets, J. Exp. Biol. 200 (1997) 2927-2936.
M.N. Nasir, F.F. Besson, Specific interactions of mycosubtilin with cholesterol-containing artificial membranes, Langmuir 27 (2011) 10785-10792, http://dx.doi.org/10.1021/la200767e.
A.S. Murphy, W. Peer, B. Schulz, The Plant Plasma Membrane (Google eBook), Springer, 2010.
C. Silva, F.J. Aranda, A. Ortiz, V. Martínez, M. Carvajal, J.A. Teruel, Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach, J. Colloid Interface Sci. 358 (2011) 192-201, http://dx.doi.org/10.1016/j.jcis.2011.02.048.
F. Jean-Franc¸ois, B. Desbat, E.J. Dufourc, Selectivity of cateslytin for fungi: the role of acidic lipid-ergosterol membrane fluidity in antimicrobial action, FASEB J. 23 (2009) 3692-3701, http://dx.doi.org/10.1096/fj.09-135574.
M.N. Nasir, F. Besson, Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface, J. Colloid Interface Sci. 387 (2012) 187-193, http://dx.doi.org/10.1016/j.jcis.2012.07.091.
P. Calvez, E. Demers, E. Boisselier, C. Salesse, Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins, Langmuir 27 (2011) 1373-1379, http://dx.doi.org/10.1021/la104097n.
S. Gatard, M.N. Nasir, M. Deleu, N. Klai, V. Legrand, S. Bouquillon, Bolaamphiphiles derived from alkenyl L-rhamnosides and alkenyl D-xylosides: importance of the hydrophilic head, Molecules 18 (2013) 6101-6112, http://dx.doi.org/10.3390/molecules18056101.
M.N. Nasir, A. Thawani, A. Kouzayha, F. Besson, Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models, Colloids Surf. B: Biointerfaces 78 (2010) 17-23, http://dx.doi.org/10.1016/j.colsurfb.2010.01.034.
G.L. Gaines, Insoluble Monolayers at Liquid-gas Interfaces, Interscience Publishers, New York, 1966.
P. Dynarowicz-Ła¸tka, A. Dhanabalan, O.N. Oliveira, Modern physicochemical research on Langmuir monolayers, Adv. Colloid Interf. Sci. 91 (2001) 221-293, http://dx.doi.org/10.1016/S0001-8686(99)00034-2.
J.J. Giner-Casares, G. Brezesinski, H. Möhwald, Langmuir monolayers as unique physical models, Curr. Opin. Colloid Interface Sci. (2013), http://dx.doi.org/10.1016/j.cocis.2013.07.006.
C. Stefaniu, G. Brezesinski, H. Möhwald, Langmuir monolayers as models to study processes at membrane surfaces, Adv. Colloid Interf. Sci. (2014), http://dx.doi.org/10.1016/j.cis.2014.02.013.
M. Eeman, A. Berquand, Y.F. Dufrêne, M. Paquot, S. Dufour, M. Deleu, Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization, Langmuir 22 (2006) 11337-11345, http://dx.doi.org/10.1021/la061969p.
M.N. Nasir, F. Besson, Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers, Biochim. Biophys. Acta Biomembr. 1818 (2012) 1302-1308, http://dx.doi.org/10.1016/j.bbamem.2012.01.020.
K. Ariga, Y. Yamauchi, T. Mori, J.P. Hill, 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science, Adv. Mater. 25 (2013) 6477-6512, http://dx.doi.org/10.1002/adma.201302283.
N. Düzgüneş, H. Faneca, M.C. Lima, Methods to monitor liposome fusion, permeability, and interaction with cells, Methods Mol. Biol. 606 (2010) 209-232, http://dx.doi.org/10.1007/978-1-60761-447-0-16.
A.S. Ladokhin, S. Jayasinghe, S.H. White, How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 285 (2000) 235-245, http://dx.doi.org/10.1006/abio.2000.4773.
B. Christiaens, S. Symoens, S. Vanderheyden, Y. Engelborghs, A. Joliot, A. Prochiantz, et al., Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes, Eur. J. Biochem. 269 (2002) 2918-2926, http://dx.doi.org/10.1046/j.1432-1033.2002.02963.x.
J.N.Weinstein, S. Yoshikami, P. Henkart, Liposome cell interaction: Transfer and intracellular release of a trapped fluorescent marker, 1977.
A.M. Garcia, Determination of ion permeability by fl uorescence quenching, Methods Enzymol. 207 (1992) 501-510.
H. Ellens, J. Bentz, F.C. Szoka, H+- and Ca2+-induced fusion and destabilization of liposomes, Biochemistry 24 (1985) 3099-3106.
J. Wilschut, D. Papahadjopoulos, Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature 281 (1979) 690-692.
D. Hoekstra, N. Duzgunes, Lipidmixing assays to determine fusion in liposome systems, Methods Enzymol. 220 (1993) 15-32.
D.K. Struck, D. Hoekstra, R.E. Pagano, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20 (1981) 4093-4099.
L.M.S. Loura, F. Fernandes, M. Prieto, Membrane microheterogeneity: Förster resonance energy transfer characterization of lateralmembrane domains, Eur. Biophys. J. 39 (2010) 589-607, http://dx.doi.org/10.1007/s00249-009-0547-5.
L. Lins, C. Flore, L. Chapelle, P.J. Talmud, A. Thomas, R. Brasseur, Lipid-interacting properties of the N-terminal domain of human apolipoprotein C-III, Protein Eng. 15 (2002) 513-520.
L. Lins, R. Brasseur, Tilted peptides: a structural motif involved in protein membrane insertion? J. Pept. Sci. 14 (2008) 416-422, http://dx.doi.org/10.1002/psc.971.
T. Parasassi, E.K. Krasnowska, L. Bagatolli, E. Gratton, Laurdan and Prodan as polarity-sensitive fluorescent membrane probes, J. Fluoresc. 8 (1998) 365-373.
L.A. Bagatolli, To see or not to see: lateral organization of biological membranes and fluorescence microscopy, Biochim. Biophys. Acta 1758 (2006) 1541-1556, http://dx.doi.org/10.1016/j.bbamem.2006.05.019.
L. Jin, A.C. Millard, J.P. Wuskell, X. Dong, D. Wu, H.A. Clark, et al., Characterization and application of a new optical probe for membrane lipid domains, Biophys. J. 90 (2006) 2563-2575, http://dx.doi.org/10.1529/biophysj.105.072884.
J.M. Kwiatek, D.M. Owen, A. Abu-Siniyeh, P. Yan, L.M. Loew, K. Gaus, Characterization of a new series of fluorescent probes for imagingmembrane order, PLoS One 8 (2013) e52960, http://dx.doi.org/10.1371/journal.pone.0052960.
J. Juhasz, J.H. Davis, F.J. Sharom, Fluorescent probe partitioning in giant unilamellar vesicles of "lipid raft" mixtures, Biochem. J. 430 (2010) 415-423, http://dx.doi.org/10.1042/BJ20100516.
L.M.S. Loura, M. Prieto, Dehydroergosterol structural organization in aqueous medium and in a model system of membranes, Biophys. J. 72 (1997) 2226-2236.
K.H. Cheng, J. Virtanen, P. Somerharju, Fluorescence studies of dehydroergosterol in phosphatidylethanolarnine/phosphatidylcholine bilayers, Biophys. J. 77 (1999) 3108-3119.
J. Lorent, L. Lins, O. Domenech, J. Quetin-Leclercq, R. Brasseur, M.-P. Mingeot-Leclercq, et al., Domain formation and permeabilization induced by the saponin α-hederin and its aglycone hederagenin in a cholesterol-containing bilayer, Langmuir 30 (2014) 4556-4569, http://dx.doi.org/10.1021/la4049902.
I. Jelesarov, H.R. Bosshard, Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition, J. Mol. Recognit. 12 (1999) 3-18, http://dx.doi.org/10.1002/(SICI)1099-1352(199901/02)12:1b3::AID-JMR441N3.0.CO;2-6.
H. Heerklotz, J. Seelig, Titration calorimetry of surfactant-membrane partitioning and membrane solubilization, Biochim. Biophys. Acta Biomembr. 1508 (2000) 69-85, http://dx.doi.org/10.1016/S0304-4157(00)00009-5.
T. Abraham, R.N.A.H. Lewis, R.S. Hodges, R.N. Mc Elhaney, Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes, Biochemistry 44 (2005) 11279-11285.
J. Seelig, Thermodynamics of lipid-peptide interactions, Biochim. Biophys. Acta 1666 (2004) 40-50, http://dx.doi.org/10.1016/j.bbamem.2004.08.004.
R. Ghai, R.J. Falconer, B.M. Collins, Applications of isothermal titration calorimetry in pure and applied research-survey of the literature from 2010, J. Mol. Recognit. 25 (2012) 32-52, http://dx.doi.org/10.1002/jmr.1167.
H. Heerklotz, The microcalorimetry of lipid membranes, J. Phys. Condens. Matter 16 (2004) R441-R467, http://dx.doi.org/10.1088/0953-8984/16/15/R01.
V. Ball, C. Maechling, Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry, Int. J. Mol. Sci. 10 (2009) 3283-3315, http://dx.doi.org/10.3390/ijms10083283.
P. Draczkowski, D. Matosiuk, K. Jozwiak, Isothermal titration calorimetry in membrane protein research, J. Pharm. Biomed. Anal. 87 (2014) 313-325, http://dx.doi.org/10.1016/j.jpba.2013.09.003.
G. Machaidze, A. Ziegler, J. Seelig, Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis, Biochemistry 41 (2002) 1965-1971.
C.K. Wang, H.P. Wacklin, D.J. Craik, Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specifi c interactions, J. Biol. Chem. 287 (2012) 43884-43898, http://dx.doi.org/10.1074/jbc.M112.421198.
G. Henry, M. Deleu, E. Jourdan, P. Thonart, M. Ongena, The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses, Cell. Microbiol. 13 (2011) 1824-1837, http://dx.doi.org/10.1111/j.1462-5822.2011.01664.x.
D.J. Müller, Y.F. Dufrêne, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology, Nat. Nanotechnol. 3 (2008) 261-269, http://dx.doi.org/10.1038/nnano.2008.100.
H.G. Hansma, J.H. Hoh, Biomolecular imaging with the atomic force microscope, Annu. Rev. Biophys. Biomol. Struct. 23 (1994) 115-139.
C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller, Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces, Biophys. J. 77 (1999) 1150-1158.
E. Nagao, J.A. Dvorak, Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells, Biophys. J. 76 (1999) 3289-3297.
K. El Kirat, S.Morandat, Y.F. Dufrêne, Nanoscale analysis of supported lipid bilayers using atomic force microscopy, Biochim. Biophys. Acta 1798 (2010) 750-765, http://dx.doi.org/10.1016/j.bbamem.2009.07.026.
S.B. Lei, R. Tero, N.Misawa, S. Yamamura, L.J.Wan, T. Urisu, AFMcharacterization of gramicidin-A in tethered lipid membrane on silicon surface, Chem. Phys. Lett. 429 (2006) 244-249, http://dx.doi.org/10.1016/j.cplett.2006.07.091.
A.P. Quist, A. Chand, S. Ramachandran, C. Daraio, S. Jin, R. Lal, Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels, Langmuir 23 (2007) 1375-1380, http://dx.doi.org/10.1021/la062187z.
G. Binnig, C.F. Quate, Atomic force microscope, Phys. Rev. Lett. 56 (1986) 930-933, http://dx.doi.org/10.1103/PhysRevLett.56.930.
A. Alessandrini, P. Facci, AFM: a versatile tool in biophysics, Meas. Sci. Technol. 16 (2005) R65-R92, http://dx.doi.org/10.1088/0957-0233/16/6/R01.
K. El Kirat, L. Lins, R. Brasseur, Y.F. Dufrêne, Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers, Langmuir 21 (2005) 3116-3121, http://dx.doi.org/10.1021/la047640q.
F. Gaboriaud, Y.F. Dufrêne, Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces, Colloids Surf. B: Biointerfaces 54 (2007) 10-19, http://dx.doi.org/10.1016/j.colsurfb.2006.09.014.
W.F. Heinz, J.H. Hoh, Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope, Trends Biotechnol. 17 (1999) 143-150, http://dx.doi.org/10.1016/S0167-7799(99)01304-9.
A. Janshoff, M. Neitzert, Y. Oberdörfer, H. Fuchs, Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules, Angew. Chem Int. Ed. 39 (2000) 3213-3237.
V. Dupres, F. Menozzi, C. Locht, B. Clare, Nanoscalemapping and functional analysis of individual adhesins on living bacteria, Nature 2 (2005) 515-521, http://dx.doi.org/10.1038/NMETH769.
H.-J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: technique, interpretation and applications, Surf. Sci. Rep. 59 (2005) 1-152, http://dx.doi.org/10.1016/j.surfrep.2005.08.003.
Y.F. Dufrêne, P. Hinterdorfer, Recent progress in AFM molecular recognition studies, Pflugers Arch. 456 (2008) 237-245, http://dx.doi.org/10.1007/s00424-007-0413-1.
S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy ofmodel lipid membranes, Anal. Bioanal. Chem. 405 (2013) 1445-1461, http://dx.doi.org/10.1007/s00216-012-6383-y.
M. Eeman, M. Deleu, M. Paquot, P. Thonart, Y.F. Dufrêne, Nanoscale properties of mixed fengycin/ceramide monolayers explored using atomic force microscopy, Langmuir 21 (2005) 2505-2511, http://dx.doi.org/10.1021/la0475775.
O. Bouffioux, A. Berquand, M. Eeman, M. Paquot, Y.F. Dufrêne, R. Brasseur, et al., Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head, Biochim. Biophys. Acta 1768 (2007) 1758-1768, http://dx.doi.org/10.1016/j.bbamem.2007.04.015.
R. Brasseur, M. Deleu, M.-P. Mingeot-Leclercq, G. Francius, Y.F. Dufrêne, Probing peptide-membrane interactions using AFM, Surf. Interface Anal. 40 (2008) 151-156, http://dx.doi.org/10.1002/sia.2682.
G. Francius, S. Dufour, M. Deleu, M. Paquot, M.-P.P. Mingeot-Leclercq, Y.F. Dufrêne, Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity, Biochim. Biophys. Acta Biomembr. 1778 (2008) 2058-2068, http://dx.doi.org/10.1016/j.bbamem.2008.03.023.
R. Brasseur, N. Braun, K. El Kirat, M. Deleu, M.-P. Mingeot-Leclercq, Y.F. Dufrêne, The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers, Langmuir 23 (2007) 9769-9772, http://dx.doi.org/10.1021/la7014868.
D. Tyteca, A. Schanck, Y.F. Dufrêne, M. Deleu, P.J. Courtoy, P.M. Tulkens, et al., The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fl uidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages, J. Membr. Biol. 192 (2003) 203-215, http://dx.doi.org/10.1007/s00232-002-1076-7.
M. Eeman, G. Francius, Y.F. Dufrêne, K. Nott, M. Paquot, M. Deleu, Effect of cholesterol and fatty acids on the molecular interactions of fengycin with Stratum corneum mimicking lipid monolayers, Langmuir 25 (2009) 3029-3039, http://dx.doi.org/10.1021/la803439n.
D. Yamamoto, T. Uchihashi, N. Kodera, H. Yamashita, S. Nishikori, T. Ogura, et al., High-speed atomic force microscopy techniques for observing dynamic biomolecular processes, Methods Enzymol. 475 (2010) 541-564, http://dx.doi.org/10.1016/S0076-6879(10)75020-5.
T.K. Lind, P. Zieliñska, H.P. Wacklin, Z. Urbańczyk-Lipkowska, M. Cárdenas, Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes, ACS Nano 8 (2014) 396-408, http://dx.doi.org/10.1021/nn404530z.
P. Hinterdorfer, M.F. Garcia-Parajo, Y.F. Dufrêne, Single-molecule imaging of cell surfaces using near-field nanoscopy, Acc. Chem. Res. 45 (2012) 327-336, http://dx.doi.org/10.1021/ar2001167.
S. Azouzi, K. El Kirat, S. Morandat, The potent antimalarial drug cyclosporin A preferentially destabilizes sphingomyelin-rich membranes, Langmuir 26 (2010) 1960-1965, http://dx.doi.org/10.1021/la902580w.
K. El Kirat, S. Morandat, Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy, Biochim. Biophys. Acta 1768 (2007) 2300-2309, http://dx.doi.org/10.1016/j.bbamem.2007.05.006.
P.-L. Wu, C.-R. Chiu, W.-N. Huang, W.-G. Wu, The role of sulfatide lipid domains in the membrane pore-forming activity of cobra cardiotoxin, Biochim. Biophys. Acta 1818 (2012) 1378-1385, http://dx.doi.org/10.1016/j.bbamem.2012.02.018.
E. Drolle, R.M. Gaikwad, Z. Leonenko, Nanoscale electrostatic domains in cholesterol-laden lipid membranes create a target for amyloid binding, Biophys. J. 103 (2012) L27-L29, http://dx.doi.org/10.1016/j.bpj.2012.06.053.
K. Hall, T.-H. Lee, N.L. Daly, D.J. Craik, M.-I. Aguilar, Gly(6) of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes, Biochim. Biophys. Acta 1818 (2012) 2354-2361, http://dx.doi.org/10.1016/j.bbamem.2012.04.007.
M. Deleu, J. Lorent, L. Lins, R. Brasseur, N. Braun, K. El Kirat, et al., Effects of surfactin on membrane models displaying lipid phase separation, Biochim. Biophys. Acta Biomembr. 1828 (2013) 801-815, http://dx.doi.org/10.1016/j.bbamem.2012.11.007.
F. Ott, F. Cousin, A. Menelle, Surfaces and interfaces characterization by neutron reflectometry, J. Alloys Compd. 382 (2004) 29-38, http://dx.doi.org/10.1016/j.jallcom.2004.05.046.
J. Penfold, Neutron reflectivity, Langmuir 25 (2009) 3919, http://dx.doi.org/10.1021/la9003824.
J. Penfold, R.K. Thomas, Neutron reflectivity and small angle neutron scattering: an introduction and perspective on recent progress, Curr. Opin. Colloid Interface Sci. (2014), http://dx.doi.org/10.1016/j.cocis.2014.01.002.
H.P. Vacklin, F. Tiberg, G. Fragneto, R.K. Thomas, Composition of supported model membranes determined by neutron reflection, Langmuir 21 (2005) 2827-2837, http://dx.doi.org/10.1021/la047389e.
H.P. Vacklin, F. Tiberg, G. Fragneto, R.K. Thomas, Phospholipase A2 hydrolysis of supported phospholipid bilayers: a neutron reflectivity and ellipsometry study, Biochemistry 44 (2005) 2811-2821, http://dx.doi.org/10.1021/bi047727a.
G. Fragneto-Cusani, Neutron reflectivity at the solid/liquid interface: examples of applications in biophysics, J. Phys. Condens. Matter 13 (2001) 4973-4989, http://dx.doi.org/10.1088/0953-8984/13/21/322.
H.-H. Shen, R.K. Thomas, P. Taylor, The location of the biosurfactant surfactin in phospholipid bilayers supported on silica using neutron reflectometry, Langmuir 26 (2010) 320-327, http://dx.doi.org/10.1021/la9034936.
R.V. Stahelin, Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions, Mol. Biol. Cell 24 (2013) 883-886.
K. Hall, H. Mozsolits, M.-I. Aguilar, Surface plasmon resonance analysis of antimicrobial peptide-membrane interactions: affinity & mechanism of action, Lett. Pept. Sci. 10 (2003) 475-485, http://dx.doi.org/10.1007/BF02442579.
B. Wiltschi, W. Knoll, E.-K. Sinner, Binding assays with artificial tethered membranes using surface plasmon resonance, Methods 39 (2006) 134-146, http://dx.doi.org/10.1016/j.ymeth.2006.05.007.
V. Hodnik, G. Anderluh, Surface plasmon resonance for measuring interactions of proteins with lipid membranes, Methods Mol. Biol. 974 (2013) 23-36, http://dx.doi.org/10.1007/978-1-62703-275-9-2.
J.N. Horn, A. Cravens, A. Grossfield, Interactions between fengycin andmodel bilayers quantifi ed by coarse-grained molecular dynamics, Biophys. J. 105 (2013) 1612-1623, http://dx.doi.org/10.1016/j.bpj.2013.08.034.
M. Oliveira, O. Franco, J. Nascimento, C. de Melo, C. Andrade, Mechanistic aspects of peptide-membrane interactions determined by optical, dielectric and piezoelectric techniques: an overview, Curr. Protein Pept. Sci. 14 (2013) 543-555, http://dx.doi.org/10.2174/13892037113149990070.
R.A. Espiritu, N.Matsumori, M.Murata, S. Nishimura, H. Kakeya, S.Matsunaga, et al. , Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2) H nuclear magnetic resonance, Biochemistry 52 (2013) 2410-2418, http://dx.doi.org/10.1021/bi4000854.
M. Gordon-Grossman, H. Zimmermann, S.G. Wolf, Y. Shai, D. Goldfarb, Investigation of model membrane disruption mechanism by melittin using pulse electron paramagnetic resonance spectroscopy and cryogenic transmission electron microscopy, J. Phys. Chem. B 116 (2012) 179-188, http://dx.doi.org/10.1021/jp207159z.
N. Deo, P. Somasundaran, K. Subramanyan, K.P. Ananthapadmanabhan, Electron paramagnetic resonance study of the structure of lipid bilayers in the presence of sodium dodecyl sulfate, J. Colloid Interface Sci. 256 (2002) 100-105, http://dx.doi.org/10.1006/jcis.2002.8470.
S.A. Dzuba, J. Raap, Spin-echo electron paramagnetic resonance (EPR) spectroscopy of a pore-forming (Lipo)peptaibol in model and bacterial membranes, Chem. Biodivers. 10 (2013) 864-875, http://dx.doi.org/10.1002/cbdv.201200387.
D. Yonar, N. Horasan, D.D. Paktaş, Z. Abramović, J. Štrancar, M.M. Sünnetc¸ioʇlu, et al., Interaction of antidepressant drug, clomipramine, with model and biological stratum corneum membrane as studied by electron paramagnetic resonance, J. Pharm. Sci. 102 (2013) 3762-3772, http://dx.doi.org/10.1002/jps.23687.
M.F. Ottaviani, R. Daddi, M. Brustolon, N.J. Turro, D.A. Tomalia, Structural modifications of DMPC vesicles upon interaction with poly(amidoamine) dendrimers studied by CW-electron paramagnetic resonance and electron spin-echo techniques, Langmuir 15 (1999) 1973-1980, http://dx.doi.org/10.1021/la9803068.
J. Mizushima, Y. Kawasaki, T. Tabohashi, T. Kitano, K. Sakamoto, M. Kawashima, et al., Effect of surfactants on human stratum corneum: electron paramagnetic resonance study, Int. J. Pharm. 197 (2000) 193-202, http://dx.doi.org/10.1016/S0378-5173(00)00323-9.
M.L. Kraft, H.A. Klitzing, Imaging lipids with secondary ion mass spectrometry, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbalip.2014.03.003.
K.G. Victor, D.S. Cafiso, Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides, Biophys. J. 81 (2001) 2241-2250.
I.V. Ionova, V.A. Livshits, D. Marsh, Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures: spinlabel EPR study of lipid-raft formation, Biophys. J. 102 (2012) 1856-1865, http://dx.doi.org/10.1016/j.bpj.2012.03.043.
F.A. Heberle, J. Wu, S.L. Goh, R.S. Petruzielo, G.W. Feigenson, Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains, Biophys. J. 99 (2010) 3309-3318, http://dx.doi.org/10.1016/j.bpj.2010.09.064.
B. Zhmud, F. Tiberg, Interfacial dynamics and structure of surfactant layers, Adv. Colloid Interf. Sci. 113 (2005) 21-42, http://dx.doi.org/10.1016/j.cis.2005.01.001.
M. Deleu, M. Paquot, T. Nylander, Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes, Biophys. J. 94 (2008) 2667-2679, http://dx.doi.org/10.1529/biophysj.107.114090.
R.P. Richter, A.R. Brisson, Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry, Biophys. J. 88 (2005) 3422-3433, http://dx.doi.org/10.1529/biophysj.104.053728.
R. Machán, A. Miszta, W. Hermens, M. Hof, Real-time monitoring of melittin-induced pore and tubule formation from supported lipid bilayers and its physiological relevance, Chem. Phys. Lipids 163 (2010) 200-206, http://dx.doi.org/10.1016/j.chemphyslip.2009.11.005.
M.C. Howland, A.W. Szmodis, B. Sanii, A.N. Parikh, Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths, Biophys. J. 92 (2007) 1306-1317, http://dx.doi.org/10.1529/biophysj.106.097071.
D. Choi, J.H. Moon, H. Kim, B.J. Sung, M.W. Kim, G.Y. Tae, et al., Insertionmechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection, Soft Matter 8 (2012) 8294, http://dx.doi.org/10.1039/c2sm25913c.
C. Li, D. Constantin, T. Salditt, Biomimetic membranes of lipid-peptide model systems prepared on solid support, J. Phys. Condens. Matter 16 (2004) S2439-S2453, http://dx.doi.org/10.1088/0953-8984/16/26/017.
G. Fragneto, E. Bellet-Amalric, T. Charitat, P. Dubos, F. Graner, L. Perino-Galice, Neutron and X-ray reflectivity studies at solid-liquid interfaces: the interaction of a peptide with model membranes, Phys. B Condens. Matter 276-278 (2000) 501-502, http://dx.doi.org/10.1016/S0921-4526(99)01823-2.
T. Buffeteau, B. Desbat, J.M. Turlet, Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis, Appl. Spectrosc. 45 (1991) 380-389.
E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Attenuated total reflection infrared spectroscopy of proteins and lipids in biologicalmembranes, Biochim. Biophys. Acta Rev. Biomembr. 1422 (1999) 105-185, http://dx.doi.org/10.1016/S0304-4157(99)00004-0.
J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin. (Shanghai) 39 (2007) 549-559, http://dx.doi.org/10.1111/j.1745-7270.2007.00320.x.
K. Roodenko, D. Aureau, F. Yang, P. Thissen, J. Rappich, Ellipsometry of Functional Organic Surfaces and Films, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014., http://dx.doi.org/10.1007/978-3-642-40128-2.
L.K. TAMM, S.A. TATULIAN, Infrared spectroscopy of proteins and peptides in lipid bilayers, Q. Rev. Biophys. 30 (1997) 365-429.
J.L.R. Arrondo, F.M. Goñi, Infrared studies of protein-induced perturbation of lipids in lipoproteins andmembranes, Chem. Phys. Lipids 96 (1998) 53-68, http://dx.doi.org/10.1016/S0009-3084(98)00080-2.
L. Ter-Minassian-Saraga, E. Okamura, J. Umemura, T. Takenaka, Fourier transform infrared-attenuated total re fl ection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers, Biochim. Biophys. Acta Biomembr. 946 (1988) 417-423, http://dx.doi.org/10.1016/0005-2736(88)90417-8.
R.D. Herculano, F.J. Pavinatto, L. Caseli, C. D'Silva, O.N. Oliveira, The lipid composition of a cell membrane modulates the interaction of an antiparasitic peptide at the air-water interface, Biochim. Biophys. Acta 1808 (2011) 1907-1912, http://dx.doi.org/10.1016/j.bbamem.2011.03.012.
C.P. Pascholati, E.P. Lopera, F.J. Pavinatto, L. Caseli, T.M. Nobre, M.E.D. Zaniquelli, et al., The interaction of an antiparasitic peptide active against African sleeping sickness with cell membrane models, Colloids Surf. B: Biointerfaces 74 (2009) 504-510, http://dx.doi.org/10.1016/j.colsurfb.2009.08.018.
C. Loison, M.N. Nasir, E. Benichou, F. Besson, P.-F. Brevet, Multi-scale modeling of mycosubtilin lipopeptides at the air/water interface: structure and optical second harmonic generation, Phys. Chem. Chem. Phys. 16 (2014) 2136-2148, http://dx.doi.org/10.1039/c3cp53101e.
M.N. Nasir, F. Besson, M. Deleu, Interactions des antibiotiques ituriniques avec la membrane plasmique. Apport des systèmes biomimétiques des membranes (Synthèse bibliographique), Biotechnol. Agron. Soc. Environ. 17 (2013) 505-516.
M.N. Nasir, V. Legrand, S. Gatard, S. Bouquillon, K. Nott, L. Lins, et al., Physicochemical and membrane-interacting properties of D-xylose-based bolaforms, Influence of the anomeric confi guration, MATEC Web Conf., 4, 2013, p. 04003, http://dx.doi.org/10.1051/matecconf/20130404003.
M.N. Nasir, E. Benichou, C. Loison, I. Russier-Antoine, F. Besson, P.-F. Brevet, Influence of the tyrosine environment on the second harmonic generation of iturinic antimicrobial lipopeptides at the air-water interface, Phys. Chem. Chem. Phys. 15 (2013) 19919-19924, http://dx.doi.org/10.1039/c3cp53098a.
M.N. Nasir, E. Benichou, J.S. Guez, P. Jacques, P.-F. Brevet, F. Besson, Second harmonic generation to monitor the interactions of the antimicrobial mycosubtilin with membrane-mimicking interfacial monolayers, Biogeosciences 2 (2012) 108-112, http://dx.doi.org/10.1007/s12668-012-0037-6.
F. Besson, M.J. Quentin, G. Michel, Action of mycosubtilin on erythrocytes and artificial membranes, Microbios 59 (1989) 137-143.
N. Izumiya, Synthetic aspects of biologically active cyclic peptides: gramicidin S and tyrocidines, 1979.
H. Kleinkauf, H. von Döhren, Biochemistry of peptide antibiotics: recent advances in the biotechnology of B-lactams and microbial bioactive peptides, 1990.
E.J. Prenner, R.N.A.H. Lewis, M. Jelokhani-Niaraki, R.S. Hodges, R.N. McElhaney, Cholesterol attenuates the interaction of the antimicrobial peptide gramicidin S with phospholipid bilayer membranes, Biochim. Biophys. Acta Biomembr. 1510 (2001) 83-92, http://dx.doi.org/10.1016/S0005-2736(00)00337-0.
R.N.A.H. Lewis, M. Kiricsi, E.J. Prenner, R.S. Hodges, R.N. McElhaney, Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes, Biochemistry 42 (2003) 440-449, http://dx.doi.org/10.1021/bi026707a.
I. Martin, F. Defrise-Quertain, V. Mandieau, N.M. Nielsen, T. Saermark, A. Burny, et al., Fusogenic activity of SIV (Simian Immunodeficiency Virus) peptides located in the GP32 NH2 terminal domain, Biochem. Biophys. Res. Commun. 175 (1991) 872-879, http://dx.doi.org/10.1016/0006-291X(91)91646-T.
L. Lins, R. Brasseur, M. Rosseneu, C.Y. Yang, D.A. Sparrow, J.T. Sparrow, et al., Structure and orientation of apo B-100 peptides into a lipid bilayer, J. Protein Chem. 13 (1994) 77-88.
A. Grelard, A. Couvreux, C. Loudet, E.J. Dufourc, Solution and solid-state NMR of lipids, Methods Mol. Biol. 462 (2009) 111-133.
A. Grélard, C. Loudet, A. Diller, E.J. Dufourc, NMR spectroscopy of lipid bilayers, Methods Mol. Biol. 654 (2010) 341-359, http://dx.doi.org/10.1007/978-1-60761-762-4-18.
M.P. Mingeot-Leclercq, R. Brasseur, A. Schanck, Molecular parameters involved in aminoglycoside nephrotoxicity, J. Toxicol. Environ. Health 44 (1995) 263-300, http://dx.doi.org/10.1080/15287399509531960.
R. Mingeot-Leclercq, Marie-Paule Schanck, Andre Van Bambeke, Francoise Lins, Laurence Brasseur, Molecular description of the interactions of aminoglycoside antibiotics with negatively-charged phospholipids. Theoretical molecular modelling and experimental results, Pharmacology 14 (1995) 71-98 (Life Sci. Adv.).
J. Barry, M. Fritz, J.R. Brender, P.E.S. Smith, D.-K. Lee, A. Ramamoorthy, Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin, J. Am. Chem. Soc. 131 (2009) 4490-4498, http://dx.doi.org/10.1021/ja809217u.
D.E. Warschawski, A.A. Arnold, M. Beaugrand, A. Gravel, É. Chartrand, I. Marcotte, Choosing membrane mimetics for NMR structural studies of transmembrane proteins, Biochim. Biophys. Acta 1808 (2011) 1957-1974, http://dx.doi.org/10.1016/j.bbamem.2011.03.016.
D.A. Kallick, M.R. Tessmer, C.R. Watts, C.Y. Li, The use of dodecylphosphocholine micelles in solution NMR, J. Magn. Reson. Ser. B 109 (1995) 60-65, http://dx.doi.org/10.1006/jmrb.1995.1146.
R.S. Prosser, F. Evanics, J.L. Kitevski, M.S. Al-Abdul-Wahid, Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins, Biochemistry 45 (2006) 8453-8465, http://dx.doi.org/10.1021/bi060615u.
S.G. Boxer, M.L. Kraft, P.K. Weber, Advances in imaging secondary ion mass spectrometry for biological samples, Annu. Rev. Biophys. 38 (2009) 53-74, http://dx.doi.org/10.1146/annurev.biophys.050708.133634.
I. Gözen, A. Jesorka, Instrumental methods to characterize molecular phospholipid films on solid supports, Anal. Chem. 84 (2012) 822-838, http://dx.doi.org/10.1021/ac203126f.
M. Lozano, Z. Liu, E. Sunnick, A. Janshoff, K. Kumar, S.G. Boxer, Colocalization of the ganglioside GM1 and cholesterol detected by secondary ion mass spectrometry, J. Am. Chem. Soc. 135 (2013) 5620-5630.
R. Harkewicz, E.A. Dennis, Applications of mass spectrometry to lipids and membranes, Annu. Rev. Biochem. 80 (2011) 301-325.
C.M. McQuaw, L. Zheng, A.G. Ewing, N.Winograd, Localization of sphingomyelin in cholesterol domains by imaging mass spectrometry, Langmuir 23 (2007) 5645-5650, http://dx.doi.org/10.1021/la063251f.
M.L. Kraft, P.K. Weber, M.L. Longo, I.D. Hutcheon, S.G. Boxer, Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry, Science 313 (2006) 1948-1951, http://dx.doi.org/10.1126/science.1130279.
C.R. Anderton, K. Lou, P.K. Weber, I.D. Hutcheon, M.L. Kraft, Correlated AFM and NanoSIMS imaging to probe cholesterol-induced changes in phase behavior and non-ideal mixing in ternary lipid membranes, Biochim. Biophys. Acta 1808 (2011) 307-315, http://dx.doi.org/10.1016/j.bbamem.2010.09.016.
K. Kita-Tokarczyk, F. Itel, M. Grzelakowski, S. Egli, P. Rossbach, W. Meier, Monolayer interactions between lipids and amphiphilic block copolymers, Langmuir 25 (2009) 9847-9856, http://dx.doi.org/10.1021/la900948a.
M. Saleem, M.C. Meyer, D. Breitenstein, H.-J. Galla, The surfactant peptide KL4 in lipid monolayers: phase behavior, topography, and chemical distribution, J. Biol. Chem. 283 (2008) 5195-5207, http://dx.doi.org/10.1074/jbc.M705944200.
P. Rakowska, H. Jiang, S. Ray, A. Pyne, B. Lamarre, M. Carr, et al., Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers, PNAS 110 (2013) 8918-8923, http://dx.doi.org/10.1073/pnas.1222824110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1222824110.
L. Yang, X.-Y. Yu, Z. Zhu, M.J. Iedema, J.P. Cowin, Probing liquid surfaces under vacuum using SEM and ToF-SIMS, Lab Chip 11 (2011) 2481-2484, http://dx.doi.org/10.1039/c0lc00676a.
L. Lins, A. Thomas-Soumarmon, T. Pillot, J. Vandekerckhove, M. Rosseneu, R. Brasseur, Molecular determinants of the interaction between the c-terminal domain of Alzheimer's β-amyloid peptide and apolipoprotein E α-helices, J. Neurochem. 73 (1999) 758-769, http://dx.doi.org/10.1046/j.1471-4159.1999.0730758.x.
R. Brasseur, J.A. Killian, B. De Kruijff, J.M. Ruysschaert, Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase, Biochim. Biophys. Acta 903 (1987) 11-17.
L. Lins, R. Brasseur, The hydrophobic effect in protein folding, FASEB J. 9 (1995) 535-540, http://dx.doi.org/10.1042/BJ20100615.
H. Razafindralambo, C. Blecker, S. Mezdour, C. Deroanne, J.-M. Crowet, R. Brasseur, et al., Impacts of the carbonyl group location of ester bond on interfacial properties of sugar-based surfactants: experimental and computational evidences, J. Phys. Chem. B 113 (2009) 8872-8877, http://dx.doi.org/10.1021/jp903187f.
X. Gallet, M. Deleu, H. Razafindralambo, P. Jacques, P. Thonart, M. Paquot, et al., Computer simulation of surfactin conformation at a hydrophobic/hydrophilic interface, Langmuir 15 (1999) 2409-2413.
F. Nsimba Zakanda, L. Lins, K. Nott, M. Paquot, G. Mvumbi Lelo, M. Deleu, Interaction of hexadecylbetainate chloride with biological relevant lipids, Langmuir 28 (2012) 3524-3533, http://dx.doi.org/10.1021/la2040328.
M.-P. Mingeot-Leclercq, L. Lins, M. Bensliman, A. Thomas, F. Van Bambeke, J. Peuvot, et al., Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment, Biochim. Biophys. Acta 1609 (2003) 28-38.
J. Fantini, D. Carlus, N. Yahi, The fusogenic tilted peptide (67-78) of α-synuclein is a cholesterol binding domain, Biochim. Biophys. Acta 1808 (2011) 2343-2351, http://dx.doi.org/10.1016/j.bbamem.2011.06.017.
J. Fantini, F.J. Barrantes, How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains, Front. Physiol. 4 (2013) 31, http://dx.doi.org/10.3389/fphys.2013.00031.
L. Lins, M. Decaffmeyer, A. Thomas, R. Brasseur, Relationships between the orientation and the structural properties of peptides and their membrane interactions, Biochim. Biophys. Acta 1778 (2008) 1537-1544.
J. Crowet, L. Lins, I. Dupiereux, B. Elmoualija, A. Lorin, B. Charloteaux, et al., Tilted properties of the 67-78 fragment of alpha-synuclein are responsible for membrane destabilization and neurotoxicity, Proteins 68 (2007) 936-947, http://dx.doi.org/10.1002/prot.21483.
L. Lins, B. Charloteaux, C. Heinen, A. Thomas, R. Brasseur, "De novo" design of peptides with specific lipid-binding properties, Biophys. J. 90 (2006) 470-479.
L. Lins, B. Charloteaux, A. Thomas, R. Brasseur, Computational study of lipiddestabilizing protein fragments: towards a comprehensive view of tilted peptides, Proteins 44 (2001) 435-447.
A.P. Lyubartsev, A.L. Rabinovich, Recent development in computer simulations of lipid bilayers, Soft Matter 7 (2011) 25, http://dx.doi.org/10.1039/c0sm00457j.
P. Bjelkmar, P.S. Niemelä, I. Vattulainen, E. Lindahl, Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel, PLoS Comput. Biol. 5 (2009) e1000289.
J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations, J. Phys. Chem. B 105 (2001) 4464-4470, http://dx.doi.org/10.1021/jp010238p.
S.J. Marrink, A.H. de Vries, A.E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B 108 (2004) 750-760, http://dx.doi.org/10.1021/jp036508g.
M. Orsi, J.W. Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PLoS One 6 (2011) e28637, http://dx.doi.org/10.1371/journal.pone.0028637.
L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S. Marrink, The MARTINI coarse-grained force fi eld: extension to proteins, J. Chem. Theory Comput. 4 (2008) 819-834, http://dx.doi.org/10.1021/ct700324x.
C.A. López, A.J. Rzepiela, A.H. de Vries, L. Dijkhuizen, P.H. Hünenberger, S.J. Marrink, Martini coarse-grained force field: extension to carbohydrates, J. Chem. Theory Comput. 5 (2009) 3195-3210, http://dx.doi.org/10.1021/ct900313w.
H.J. Risselada, S.J. Marrink, The molecular face of lipid rafts in model membranes, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 17367-17372, http://dx.doi.org/10.1073/pnas.0807527105.
H.J. Risselada, C. Kutzner, H. Grubmüller, Caught in the act: visualization of SNARE-mediated fusion events in molecular detail, Chembiochem 12 (2011) 1049-1055, http://dx.doi.org/10.1002/cbic.201100020.
S. Baoukina, D.P. Tieleman, Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase, Biophys. J. 100 (2011) 1678-1687, http://dx.doi.org/10.1016/j.bpj.2011.02.019.
S. Jalili, M. Akhavan, A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfatemicelle in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 352 (2009) 99-102, http://dx.doi.org/10.1016/j.colsurfa.2009.10.007.
J.F. Kraft, M. Vestergaard, B. Schiøtt, L. Thøgersen, Modeling the self-assembly and stability of DHPC micelles using atomic resolution and coarse grained MD simulations, J. Chem. Theory Comput. 8 (2012) 1556-1569, http://dx.doi.org/10.1021/ct200921u.
X. Periole, T. Huber, S.-J. Marrink, T.P. Sakmar, G protein-coupled receptors self-assemble in dynamics simulations of model bilayers, J. Am. Chem. Soc. 129 (2007) 10126-10132, http://dx.doi.org/10.1021/ja0706246.
B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, et al., CHARMM: the biomolecular simulation program, J. Comput. Chem. 30 (2009) 1545-1614, http://dx.doi.org/10.1002/jcc.21287.
J.B. Klauda, V. Monje, T. Kim, W. Im, Improving the CHARMM force field for polyunsaturated fatty acid chains, J. Phys. Chem. B 116 (2012) 9424-9431, http://dx.doi.org/10.1021/jp304056p.
J.B. Lim, B. Rogaski, J.B. Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B 116 (2012) 203-210, http://dx.doi.org/10.1021/jp207925m.
B. Jójárt, T.A. Martinek, Performance of the general amber force field in modeling aqueous POPC membrane bilayers, J. Comput. Chem. 28 (2007) 2051-2058, http://dx.doi.org/10.1002/jcc.20748.
C.J. Dickson, L. Rosso, R.M. Betz, R.C.Walker, I.R. Gould, GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid, Soft Matter 8 (2012) 9617, http://dx.doi.org/10.1039/c2sm26007g.
J.P.M. Jämbeck, A.P. Lyubartsev, Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids, J. Phys. Chem. B 116 (2012) 3164-3179, http://dx.doi.org/10.1021/jp212503e.
J.P.M. Jämbeck, A.P. Lyubartsev, Another piece of the membrane puzzle: extending slipids further, J. Chem. Theory Comput. 9 (2013) 774-784, http://dx.doi.org/10.1021/ct300777p.
E. Lindahl, B. Hess, D. Van Der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Mol.Model. Annu. 7 (2001) 306-317, http://dx.doi.org/10.1007/s008940100045.
O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature, Biophys. J. 72 (1997) 2002-2013, http://dx.doi.org/10.1016/S0006-3495(97)78845-3.
M. Höltje, T. Förster, B. Brandt, T. Engels, W. von Rybinski, H.-D. Höltje, Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol, Biochim. Biophys. Acta Biomembr. 1511 (2001) 156-167, http://dx.doi.org/10.1016/S0005-2736(01)00270-X.
P.S. Niemelä, S. Ollila, M.T. Hyvönen, M. Karttunen, I. Vattulainen, Assessing the nature of lipid raftmembranes, PLoS Comput. Biol. 3 (2007) e34, http://dx.doi.org/10.1371/journal.pcbi.0030034.
D.P. Tieleman, H.J. Berendsen, A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer, Biophys. J. 74 (1998) 2786-2801, http://dx.doi.org/10.1016/S0006-3495(98)77986-X.
S.-W. Chiu, S.A. Pandit, H.L. Scott, E. Jakobsson, An improved united atom force field for simulation of mixed lipid bilayers, J. Phys. Chem. B 113 (2009) 2748-2763.
D.A. Holdbrook, Y.M. Leung, T.J. Piggot, P. Marius, P.T.F. Williamson, S. Khalid, Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study, Biochemistry 49 (2010) 10796-10802, http://dx.doi.org/10.1021/bi101743w.
T.J. Piggot, D.A. Holdbrook, S. Khalid, Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes, J. Phys. Chem. B 115 (2011) 13381-13388.
T.J. Piggot, Á. Piñeiro, S. Khalid, Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study, J. Chem. Theory Comput. 8 (2012) 4593-4609, http://dx.doi.org/10.1021/ct3003157.
A. Kukol, Lipid models for united-atom molecular dynamics simulations of proteins, J. Chem. Theory Comput. 5 (2009) 615-626, http://dx.doi.org/10.1021/ct8003468.
D. Poger, A.E. Mark, Lipid bilayers: the effect of force field on ordering and dynamics, J. Chem. Theory Comput. 8 (2012) 4807-4817, http://dx.doi.org/10.1021/ct300675z.
J.P. Ulmschneider, M.B. Ulmschneider, United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field, J. Chem. Theory Comput. 5 (2009) 1803-1813, http://dx.doi.org/10.1021/ct900086b.
S. Baoukina, L. Monticelli, M. Amrein, D.P. Tieleman, The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations, Biophys. J. 93 (2007) 3775-3782, http://dx.doi.org/10.1529/biophysj.107.113399.
M. Dahlberg, A. Maliniak, Mechanical properties of coarse-grained bilayers formed by cardiolipin and zwitterionic lipids, J. Chem. Theory Comput. 6 (2010) 1638-1649, http://dx.doi.org/10.1021/ct900654e.
S.J. Marrink, A.H. de Vries, T.A. Harroun, J. Katsaras, S.R.Wassall, Cholesterol shows preference for the interior of polyunsaturated lipid membranes, J. Am. Chem. Soc. 130 (2008) 10-11, http://dx.doi.org/10.1021/ja076641c.
S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B 111 (2007) 7812-7824, http://dx.doi.org/10.1021/jp071097f.
K.A. Scott, P.J. Bond, A. Ivetac, A.P. Chetwynd, S. Khalid, M.S.P. Sansom, Coarse-grained MD simulations of membrane protein-bilayer self-assembly, Structure 16 (2008) 621-630, http://dx.doi.org/10.1016/j.str.2008.01.014.
C.L.Wee, D. Gavaghan, M.S.P. Sansom, Lipid bilayer deformation and the free energy of interaction of a Kv channel gating-modifi er toxin, Biophys. J. 95 (2008) 3816-3826, http://dx.doi.org/10.1529/biophysj.108.130971.
L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, et al., NAMD2: greater scalability for parallel molecular dynamics, J. Comput. Phys. 151 (1999) 283-312, http://dx.doi.org/10.1006/jcph.1999.6201.
D. Poger, A.E. Mark, On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: a comparison with experiment, J. Chem. Theory Comput. 6 (2010) 325-336, http://dx.doi.org/10.1021/ct900487a.
D. Poger, W.F. Van Gunsteren, A.E. Mark, A new force field for simulating phosphatidylcholine bilayers, J. Comput. Chem. 31 (2010) 1117-1125, http://dx.doi.org/10.1002/jcc.21396.
I. Chandrasekhar, M. Kastenholz, R.D. Lins, C. Oostenbrink, L.D. Schuler, D.P. Tieleman, et al., A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field, Eur. Biophys. J. 32 (2003) 67-77, http://dx.doi.org/10.1007/s00249-002-0269-4.
J.B. Klauda, R.M. Venable, J.A. Freites, J.W. O'Connor, D.J. Tobias, C. Mondragon-Ramirez, et al., Update of the CHARMMall-atom additive force field for lipids: validation on six lipid types, J. Phys. Chem. B 114 (2010) 7830-7843, http://dx.doi.org/10.1021/jp101759q.
R.W. Benz, F. Castro-Román, D.J. Tobias, S.H.White, Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach, Biophys. J. 88 (2005) 805-817, http://dx.doi.org/10.1529/biophysj.104.046821.
A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, et al., An automated force field topology builder (ATB) and repository: version 1.0, J. Chem. Theory Comput. 7 (2011) 4026-4037, http://dx.doi.org/10.1021/ct200196m.
J. Domański, P.J. Stansfeld, M.S.P. Sansom, O. Beckstein, Lipidbook: a public repository for force-field parameters used in membrane simulations, J. Membr. Biol. 236 (2010) 255-258, http://dx.doi.org/10.1007/s00232-010-9296-8.
S.E. Feller, A.D. MacKerell, An improved empirical potential energy function for molecular simulations of phospholipids, J. Phys. Chem. B 104 (2000) 7510-7515.
S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations, PLoS One 2 (2007) e880, http://dx.doi.org/10.1371/journal.pone.0000880.
N. Dony, J.M. Crowet, B. Joris, R. Brasseur, L. Lins, SAHBNET, an accessible surface-based elastic network: an application to membrane protein, Int. J. Mol. Sci. 14 (2013) 11510-11526, http://dx.doi.org/10.3390/ijms140611510.
M.M. Ghahremanpour, S.S. Arab, S.B. Aghazadeh, J. Zhang, D. van der Spoel, MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program, Bioinformatics 30 (2014) 439-441, http://dx.doi.org/10.1093/bioinformatics/btt680.
S. Jo, J.B. Lim, J.B. Klauda, W. Im, CHARMM-GUI membrane builder formixed bilayers and its application to yeast membranes, Biophys. J. 97 (2009) 50-58, http://dx.doi.org/10.1016/j.bpj.2009.04.013.
B. Sommer, T. Dingersen, C. Gamroth, S.E. Schneider, S. Rubert, J. Krüger, et al., CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems, J. Chem. Inf. Model. (2011) 1165-1182, http://dx.doi.org/10.1021/ci1003619.
J.-M. Crowet, D.L. Parton, B.A. Hall, S. Steinhauer, R. Brasseur, L. Lins, et al., Multiscale simulation of the simian immunodeficiency virus fusion peptide, J. Phys. Chem. B 116 (2012) 13713-13721.
P.J. Bond, M.S.P. Sansom, Insertion and assembly of membrane proteins via simulation, J. Am. Chem. Soc. 128 (2006) 2697-2704, http://dx.doi.org/10.1021/ja0569104.
M.G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, G. Groenhof, g-membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation, J. Comput. Chem. 31 (2010) 2169-2174, http://dx.doi.org/10.1002/jcc.21507.
C. Kandt, W.L. Ash, D.P. Tieleman, Setting up and runningmolecular dynamics simulations of membrane proteins, Methods 41 (2007) 475-488, http://dx.doi.org/10.1016/j.ymeth.2006.08.006.
P. Gkeka, L. Sarkisov, Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations, J. Phys. Chem. B 114 (2010) 826-839, http://dx.doi.org/10.1021/jp908320b.
V.V. Vostrikov, B.A. Hall, D.V. Greathouse, R.E. Koeppe, M.S.P. Sansom, Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations, J. Am. Chem. Soc. 132 (2010) 5803-5811, http://dx.doi.org/10.1021/ja100598e.
M.F. Lensink, B. Christiaens, J. Vandekerckhove, A. Prochiantz, M. Rosseneu, Penetratin-membrane association: W48/R52/W56 shield the peptide from the aqueous phase, Biophys. J. 88 (2005) 939-952, http://dx.doi.org/10.1529/biophysj.104.052787.
M.F. Martini, M. Pickholz, Molecular dynamics study of uncharged bupivacaine enantiomers in phospholipid bilayers, Int. J. Quantum Chem. 112 (2012) 3341-3345, http://dx.doi.org/10.1002/qua.24208.
W. Kopeć, J. Telenius, H. Khandelia, Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes, FEBS J. 280 (2013) 2785-2805, http://dx.doi.org/10.1111/febs.12286.
M. Manna, T. Rog, I. Vattulainen, The challenges of understanding glycolipid functions: an open outlook based on molecular simulations, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbalip.2013.12.016.
J.D. Perlmutter, J.N. Sachs, Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations, J. Am. Chem. Soc. 133 (2011) 6563-6577, http://dx.doi.org/10.1021/ja106626r.
J. Domański, S.J. Marrink, L.V. Schäfer, Transmembrane helices can induce domain formation in crowded modelmembranes, Biochim. Biophys. Acta Biomembr. 1818 (2012) 984-994, http://dx.doi.org/10.1016/j.bbamem.2011.08.021.
H.S. Muddana, H.H. Chiang, P.J. Butler, Tuning membrane phase separation using nonlipid amphiphiles, Biophys. J. 102 (2012) 489-497, http://dx.doi.org/10.1016/j.bpj.2011.12.033.
L.V. Schäfer, D.H. de Jong, A. Holt, A.J. Rzepiela, A.H. de Vries, B. Poolman, et al., Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 1343-1348, http://dx.doi.org/10.1073/pnas.1009362108.
Z. Zhang, L. Lu, M.L. Berkowitz, Energetics of cholesterol transfer between lipid bilayers, J. Phys. Chem. B 112 (2008) 3807-3811, http://dx.doi.org/10.1021/jp077735b.
W.F.D. Bennett, J.L. MacCallum, M.J. Hinner, S.J. Marrink, D.P. Tieleman, Molecular view of cholesterol flip-flop and chemical potential in different membrane environments, J. Am. Chem. Soc. 131 (2009) 12714-12720, http://dx.doi.org/10.1021/ja903529f.
W.F.D. Bennett, D.P. Tieleman, Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraftmembranes, J. Lipid Res. 53 (2012) 421-429, http://dx.doi.org/10.1194/jlr.M022491.
C.L. Wennberg, D. Van Der Spoel, J.S. Hub, D. van der Spoel, Large influence of cholesterol on solute partitioning into lipid membranes, J. Am. Chem. Soc. 134 (2012) 5351-5361, http://dx.doi.org/10.1021/ja211929h.
T. Pillot, M. Goethals, B. Vanloo, C. Talussot, R. Brasseur, J. Vandekerckhove, et al., Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide, J. Biol. Chem. 271 (1996) 28757-28765.
B. Charloteaux, A. Lorin, J.M. Crowet, V. Stroobant, L. Lins, A. Thomas, et al., The N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro, J. Mol. Biol. 359 (2006) 597-609.
J. Fantini, N. Yahi, N. Garmy, Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bonddependent sterol tuning of glycolipid conformation, Front. Physiol. 4 (2013) 120, http://dx.doi.org/10.3389/fphys.2013.00120.
C. Di Scala, J.-D. Troadec, C. Lelièvre, N. Garmy, J. Fantini, H. Chahinian, Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide, J. Neurochem. 128 (2014) 186-195, http://dx.doi.org/10.1111/jnc.12390.
F. Peypoux, J.M. Bonmatin, J. Wallach, Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol. 51 (1999) 553-563, http://dx.doi.org/10.1007/s002530051432.
R. Maget-Dana, M. Ptak, Interactions of surfactin with membrane models, Biophys. J. 68 (1995) 1937-1943, http://dx.doi.org/10.1016/S0006-3495(95)80370-X.
C. Carrillo, J.A. Teruel, F.J. Aranda, A. Ortiz, Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochim. Biophys. Acta Biomembr. 1611 (2003) 91-97, http://dx.doi.org/10.1016/S0005-2736(03)00029-4.
L. Oftedal, L. Myhren, J. Jokela, G. Gausdal, K. Sivonen, S.O. Døskeland, et al., The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner, Biochim. Biophys. Acta 1818 (2012) 3000-3009, http://dx.doi.org/10.1016/j.bbamem.2012.07.015.
L. D'Auria, M. Deleu, S. Dufour, M.-P. Mingeot-Leclercq, D. Tyteca, Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length, Biochim. Biophys. Acta 1828 (2013) 2064-2073, http://dx.doi.org/10.1016/j.bbamem.2013.05.006.
M. Deleu, O. Bouffioux, H. Razafindralambo, M. Paquot, C. Hbid, P. Thonart, et al., Interaction of surfactin with membranes: a computational approach, Langmuir 19 (2003) 3377-3385, http://dx.doi.org/10.1021/la026543z.
A. Grau, J.C. Gómez Fernández, F. Peypoux, A. Ortiz, A study on the interactions of surfactin with phospholipid vesicles, Biochim. Biophys. Acta 1418 (1999) 307-319.
S. Buchoux, J. Lai-Kee-Him, M. Garnier, P. Tsan, F. Besson, A. Brisson, et al., Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism, Biophys. J. 95 (2008) 3840-3849, http://dx.doi.org/10.1529/biophysj.107.128322.
M. Deleu, M. Paquot, P. Jacques, P. Thonart, Y. Adriaensen, Y.F. Dufrêne, Nanometer scale organization of mixed surfactin/phosphatidylcholine monolayers, Biophys. J. 77 (1999) 2304-2310, http://dx.doi.org/10.1016/S0006-3495(99)77069-4.
R. Maget-Dana, F. Peypoux, Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties, Toxicology 87 (1994) 151-174.
R. Maget-Dana, M. Ptak, Iturin lipopeptides: interactions of mycosubtilin with lipids in planar membranes and mixed monolayers, Biochim. Biophys. Acta Biomembr. 1023 (1990) 34-40, http://dx.doi.org/10.1016/0005-2736(90)90006-A.
M.N. Nasir, P. Laurent, C. Flore, L. Lins, M. Ongena, M. Deleu, Analysis of calcium-induced effects on the conformation of fengycin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 110 (2013) 450-457, http://dx.doi.org/10.1016/j.saa.2013.03.063.
J. Schneider, K. Taraz, H. Budzikiewicz, M. Deleu, P. Thonart, P. Jacques, The structure of two fengycins from Bacillus subtilis S499, Z. Naturforsch. C. 54 (1999) 859-865.
M. Deleu, M. Paquot, T. Nylander, Fengycin interaction with lipidmonolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes, J. Colloid Interface Sci. 283 (2005) 358-365, http://dx.doi.org/10.1016/j.jcis.2004.09.036.
H. Patel, C. Tscheka, K. Edwards, G. Karlsson, H. Heerklotz, All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713, Biochim. Biophys. Acta 1808 (2011) 2000-2008, http://dx.doi.org/10.1016/j.bbamem.2011.04.008.
M.P. Mingeot-Leclercq, L. Lins, M. Bensliman, F. Van Bambeke, P. Van Der Smissen, J. Peuvot, et al., Membrane destabilization induced by beta-amyloid peptide 29-42: importance of the amino-terminus, Chem. Phys. Lipids 120 (2002) 57-74.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.