[en] One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain's ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurology
Author, co-author :
Casali, AG ✱
Gosseries, Olivia ✱; Université de Liège - ULiège > Centre de recherches du cyclotron
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. T. Alkire, A. G. Hudetz, G. Tononi, Consciousness and anesthesia. Science 322, 876-880 (2008).
S. Laureys, A. M. Owen, N. D. Schiff, Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3, 537-546 (2004).
R. D. Sanders, G. Tononi, S. Laureys, J. W. Sleigh, Unresponsiveness ≠ unconsciousness. Anesthesiology 116, 946-959 (2012).
S. Dehaene, J. P. Changeux, Experimental and theoretical approaches to conscious processing. Neuron 70, 200-227 (2011).
K. Friston, Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221-250 (2002).
S. Laureys, The neural correlate of (un)awareness: Lessons from the vegetative state. Trends Cogn. Sci. 9, 556-559 (2005).
G. Tononi, C. Koch, The neural correlates of consciousness: An update. Ann. N. Y. Acad. Sci. 1124, 239-261 (2008).
A. K. Seth, E. Izhikevich, G. N. Reeke, G. M. Edelman, Theories and measures of consciousness: An extended framework. Proc. Natl. Acad. Sci. U.S.A. 103, 10799-10804 (2006).
O. Sporns, The human connectome: A complex network. Ann. N. Y. Acad. Sci. 1224, 109-125 (2011).
G. Tononi, An information integration theory of consciousness. BMC Neurosci. 5, 42 (2004).
G. Tononi, G. M. Edelman, Consciousness and complexity. Science 282, 1846-1851 (1998).
M. Boly, Measuring the fading consciousness in the human brain. Curr. Opin. Neurol. 24, 394-400 (2011).
A. K. Seth, Z. Dienes, A. Cleeremans, M. Overgaard, L. Pessoa, Measuring consciousness: Relating behavioural and neurophysiological approaches. Trends Cogn. Sci. 12, 314-321 (2008).
A. K. Seth, A. B. Barrett, L. Barnett, Causal density and integrated information as measures of conscious level. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3748-3767 (2011).
G. Tononi, Consciousness as integrated information: A provisional manifesto. Biol. Bull. 215, 216-242 (2008).
G. Tononi, O. Sporns, G. M. Edelman, A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033-5037 (1994).
A. K. Engel, W. Singer, Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16-25 (2001).
B. Kotchoubey, Event-related potential measures of consciousness: Two equations with three unknowns. Prog. Brain Res. 150, 427-444 (2005).
R. W. Johnson, J. E. Shore, Relative-Entropy Minimization with Uncertain Constraints-Theory and Application to Spectrum Analysis (Defense Technical Information Center, Washington, 1984).
S. M. Pincus, I. M. Gladstone, R. A. Ehrenkranz, A regularity statistic for medical data analysis. J. Clin. Monit. 7, 335-345 (1991).
M. Massimini, F. Ferrarelli, S. K. Esser, B. A. Riedner, R. Huber, M. Murphy, M. J. Peterson, G. Tononi, Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. U.S.A. 104, 8496-8501 (2007).
M. Massimini, F. Ferrarelli, R. Huber, S. K. Esser, H. Singh, G. Tononi, Breakdown of cortical effective connectivity during sleep. Science 309, 2228-2232 (2005).
F. Ferrarelli, M. Massimini, S. Sarasso, A. Casali, B. A. Riedner, G. Angelini, G. Tononi, R. A. Pearce, Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. U.S.A. 107, 2681-2686 (2010).
M. Rosanova, O. Gosseries, S. Casarotto, M. Boly, A. G. Casali, M. A. Bruno, M. Mariotti, P. Boveroux, G. Tononi, S. Laureys, M. Massimini, Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135, 1308-1320 (2012).
R. J. Ilmoniemi, J. Virtanen, J. Ruohonen, J. Karhu, H. J. Aronen, R. Näätänen, T. Katila, Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8, 3537-3540 (1997).
A. G. Casali, S. Casarotto, M. Rosanova, M. Mariotti, M. Massimini, General indices to characterize the electrical response of the cerebral cortex to TMS. Neuroimage 49, 1459-1468 (2010).
A. Lempel, J. Ziv, On the complexity of finite sequences. IEEE Trans. Inform. Theory 22, 75-81 (1976).
F. Kaspar, H. G. Schuster, Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36, 842-848 (1987).
B. Marsh, M. White, N. Morton, G. N. Kenny, Pharmacokinetic model driven infusion of propofol in children. Br. J. Anaesth. 67, 41-48 (1991).
J. T. Giacino, K. Kalmar, J. Whyte, The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85, 2020-2029 (2004).
J. C. Sigl, N. G. Chamoun, An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10, 392-404 (1994).
G. Plourde, T. W. Picton, Long-latency auditory evoked potentials during general anesthesia: N1 and P3 components. Anesth. Analg. 72, 342-350 (1991).
M. Boly, M. I. Garrido, O. Gosseries, M. A. Bruno, P. Boveroux, C. Schnakers, M. Massimini, V. Litvak, S. Laureys, K. Friston, Preserved feedforward but impaired top-down processes in the vegetative state. Science 332, 858-862 (2011).
A. Ragazzoni, C. Pirulli, D. Veniero, M. Feurra, M. Cincotta, F. Giovannelli, R. Chiaramonti, M. Lino, S. Rossi, C. Miniussi, Vegetative versus minimally conscious states: A study using TMS-EEG, sensory and event-related potentials. PLoS One 8, e57069 (2013).
A. Vanhaudenhuyse, Q. Noirhomme, L. J. Tshibanda, M. A. Bruno, P. Boveroux, C. Schnakers, A. Soddu, V. Perlbarg, D. Ledoux, J. F. Brichant, G. Moonen, P. Maquet, M. D. Greicius, S. Laureys, M. Boly, Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133, 161-171 (2010).
K. Kaskinoro, A. Maksimow, J. Långsjö, R. Aantaa, S. Jääskeläinen, K. Kaisti, M. Särkelä, H. Scheinin, Wide inter-individual variability of bispectral index and spectral entropy at loss of consciousness during increasing concentrations of dexmedetomidine, propofol, and sevoflurane. Br. J. Anaesth. 107, 573-580 (2011).
C. Schnakers, S. Majerus, S. Laureys, Bispectral analysis of electroencephalogram signals during recovery from coma: Preliminary findings. Neuropsychol. Rehabil. 15, 381-388 (2005).
C. Fischer, J. Luaute, D. Morlet, Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 121, 1032-1042 (2010).
Y. Höller, J. Bergmann, M. Kronbichler, J. S. Crone, E. V. Schmid, S. Golaszewski, G. Ladurner, Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin. Neurophysiol. 122, 1744-1754 (2011).
A. B. Barrett, M. Murphy, M. A. Bruno, Q. Noirhomme, M. Boly, S. Laureys, A. K. Seth, Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS One 7, e29072 (2012).
G. G. Supp, M. Siegel, J. F. Hipp, A. K. Engel, Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr. Biol. 21, 1988-1993 (2011).
P. Achermann, A. A. Borbely, Temporal evolution of coherence and power in the human sleep electroencephalogram. J. Sleep Res. 7 (Suppl. 1), 36-41 (1998).
M. Arthuis, L. Valton, J. Régis, P. Chauvel, F. Wendling, L. Naccache, C. Bernard, F. Bartolomei, Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132, 2091-2101 (2009).
H. Blumenfeld, M. Westerveld, R. B. Ostroff, S. D. Vanderhill, J. Freeman, A. Necochea, P. Uranga, T. Tanhehco, A. Smith, J. P. Seibyl, R. Stokking, C. Studholme, S. S. Spencer, I. G. Zubal, Selective frontal, parietal, and temporal networks in generalized seizures. Neuroimage 19, 1556-1566 (2003).
T. Bachmann, Microgenetic Approach to the Conscious Mind (John Benjamins, Amsterdam, 2000).
C. N. Boehler, M. A. Schoenfeld, H. J. Heinze, J. M. Hopf, Rapid recurrent processing gates awareness in primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 105, 8742-8747 (2008).
V. A. F. Lamme, P. R. Roelfsema, The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571-579 (2000).
S. Majerus, H. Gill-Thwaites, K. Andrews, S. Laureys, Behavioral evaluation of consciousness in severe brain damage. Prog. Brain Res. 150, 397-413 (2005).
J. C. Bardin, J. J. Fins, D. I. Katz, J. Hersh, L. A. Heier, K. Tabelow, J. P. Dyke, D. J. Ballon, N. D. Schiff, H. U. Voss, Dissociations between behavioural and functional magnetic resonance imagingbased evaluations of cognitive function after brain injury. Brain 134, 769-782 (2011).
M. M. Monti, M. R. Coleman, A. M. Owen, Neuroimaging and the vegetative state: Resolving the behavioral assessment dilemma? Ann. N. Y. Acad. Sci. 1157, 81-89 (2009).
A. M. Owen, M. R. Coleman, M. Boly, M. H. Davis, S. Laureys, J. D. Pickard, Detecting awareness in the vegetative state. Science 313, 1402 (2006).
M. Rosanova, A. Casali, V. Bellina, F. Resta, M. Mariotti, M. Massimini, Natural frequencies of human corticothalamic circuits. J. Neurosci. 29, 7679-7685 (2009).
M. Massimini, F. Ferrarelli, M. Murphy, R. Huber, B. Riedner, S. Casarotto, G. Tononi, Cortical reactivity and effective connectivity during REM sleep in humans. Cogn. Neurosci. 1, 176-183 (2010).
P. Berg, M. Scherg, A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr. Clin. Neurophysiol. 90, 58-64 (1994).
Z. Zhang, A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335-349 (1995).
K. Friston, R. Henson, C. Phillips, J. Mattout, Bayesian estimation of evoked and induced responses. Hum. Brain Mapp. 27, 722-735 (2006).
J. Mattout, C. Phillips, W. D. Penny, M. D. Rugg, K. J. Friston, MEG source localization under multiple constraints: An extended Bayesian framework. Neuroimage 30, 753-767 (2006).
C. Phillips, J. Mattout, M. D. Rugg, P. Maquet, K. J. Friston, An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage 24, 997-1011 (2005).
J. Lv, D. M. Simpson, S. L. Bell, Objective detection of evoked potentials using a bootstrap technique. Med. Eng. Phys. 29, 191-198 (2007).
D. Pantazis, T. E. Nichols, S. Baillet, R. M. Leahy, A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25, 383-394 (2005).
M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer, New York, ed. 3, 2008).
A. G. Casali, O. Gosseries, M. Rosanova, M. Boly, S. Sarasso, K. R. Casali, S. Casarotto, M.-A. Bruno, S. Laureys, G. Tononi, M. Massimini, A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.