[en] Aim: Produce biodegradable nanoparticles to target antigen-presenting cells and evaluate their potential to be used as a vaccine delivery system. Materials & methods: Untargeted PEGylated PLGA-based nanoparticles and mannose-grafted nanoparticles were formulated and physicochemically characterized. Immortalized and primary antigen-presenting cells were used to study nanoparticle internalization patterns. The endocytic pathways and intracellular trafficking followed by nanoparticles were also investigated. Results & discussion: Nanoparticles displayed mannose residues available for binding at the nanoparticle surface. Different nanoparticle internalization patterns by immortalized and primary antigen presenting cells were verified. Macropinocytosis, clathrin-mediated endocytosis, caveolin- and lipid raft-dependent endocytosis are involved in nanoparticles internalization. Nanoparticles demonstrate both endo-lysosomal and cytosolic localizations and a tendency to accumulate nearby the endoplasmic reticulum. Conclusion & future perspective: The developed nanoparticles might drive antigens to be presented through MHC class I and II molecules to both CD8+ and CD4+ T cells, favoring a complete and coordinated immune response.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Silva, Joana M.; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia > Université catholique de Louvain (UCL), Brussels, Louvain Drug Research Institute (LDRI), Advanced Drug Delivery & Biomaterials
Vandermeulen, Gaëlle; Université catholique de Louvain (UCL), Brussels > Louvain Drug Research Institute (LDRI) > Advanced Drug Delivery & Biomaterials
Oliveira, Vanessa G.; Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular
Pinto, Sandra N.; Universidade de Lisboa, Centro de Química-Física Molecular & Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico
Rodrigues, Catarina; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia
Salgado, Ana; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia
Afonso, Carlos A.; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia
Viana, Ana S.; Faculdade de Ciências da Universidade de Lisboa, Centro de Química e Bioquímica
Jérôme, Christine ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie des macromolécules et des matériaux organiques (CERM)
Silva, Liana C.; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia
Graca, Luiis; Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular
Préat, Véronique; Université catholique de Louvain (UCL), Brussels > Louvain Drug Research Institute (LDRI) > Advanced Drug Delivery & Biomaterials
Florindo, Helena F.; Universidade de Lisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia
França RFO, da Silva CC, De Paula SO. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases. Eur. J. Clin. Microbiol. Infect. Dis. 32(6), 723-728 (2013).
Florindo HF, Pandit S, Gonçalves L, Videira M, Alpar O, Almeida AJ. Antibody and cytokine-Associated immune responses to S. equi antigens entrapped in PLA nanospheres. Biomaterials 30(28), 5161-5169 (2009).
Clawson C, Huang CT, Futalan D et al. Delivery of a peptide via poly (d,l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine 6(5), 651-661 (2010).
Schlosser E, Mueller M, Fischer S et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26(13), 1626-1637 (2008).
Bachmann MF, Jennings GT. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787-796 (2010).
Danhier F, Ansorena E, Silva, JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161(2), 505-522 (2012).
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329-347 (2003).
Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: Effect of various formulation variables. Eur. J. Pharm. Biopharm. 50(2), 257-262 (2000).
Van Kooyk Y. C-Type lectins on dendritic cells: Key modulators for the induction of immune responses. Biochem. Soc. Trans. 36(Pt 6), 1478-1481 (2008).
Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature 462(7272), 449-460 (2009).
Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 40(1), 1-9 (2006).
Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 168(2), 179-199 (2013).
Freichels H, Pourcelle V, Le Duff CS, Marchand Brynaert J, Jérôme C. 'Clip' and 'Click' chemistries combination: Toward easy PEGylation of degradable aliphatic polyesters. Macromol. Rapid Commun. 32(7), 616-621 (2011).
Vangeyte P, Leyh B, Heinrich M, Grandjean J, Bourgaux C, Jérôme R. Self-Assembly of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers in aqueous solution. Langmuir 20(20), 8442-8451 (2004).
Freichels H, Danhier F, Préat V, Lecomte P, Jérôme C. Fluorescent labeling of degradable poly (lactide-co-glycolide) for cellular nanoparticles tracking in living cells. Int. J. Artif. Organs 34(2), 152-160 (2011).
Afonso CA, Santhakumar V, Lough A, Batey RA. An expedient synthesis of cationic rhodamine fluorescent probes suitable for conjugation to amino acids and peptides. Synthesis (17), 2647-2654 (2003).
Rieger J, Freichels H, Imberty A et al. Polyester nanoparticles presenting mannose residues: Toward the development of new vaccine delivery systems combining biodegradability and targeting properties. Biomacromolecules 10(3), 651-657 (2009).
Garinot M, Fiévez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release 120(3), 195-204 (2007).
Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176(6), 1693-1702 (1992).
Florindo H, Pandit S, Lacerda L, Gonçalves L, Alpar H, Almeida A. The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-epsilon-caprolactone-based nanoparticles. Biomaterials 30(5), 879-891 (2009).
Ashany D, Savir A, Bhardwaj N, Elkon KB. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J. Immunol. 163(10), 5303-5311 (1999).
Wang X, Ramström O, Yan M. Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions. Analyst 136(20), 4174-4178 (2011).
Haspot F, Lavault A, Sinzger C et al. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS ONE 7(4), e34795 (2012).
Bhattacharyya S, Warfield KL, Ruthel G, Bavari S, Aman MJ, Hope TJ. Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology 401(1), 18-28 (2010).
Hirosue S, Kourtis IC, van der Vlies AJ, Hubbell JA, Swartz MA. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine 28(50), 7897-7906 (2010).
Autenrieth SE, Autenrieth IB. Variable antigen uptake due to different expression of the macrophage mannose receptor by dendritic cells in various inbred mouse strains. Immunology 127(4), 523-529 (2009).
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. Junho de 86(6), 3993-4003 (2004).
Norbury CC. Drinking a lot is good for dendritic cells. Immunology 117(4), 443-451 (2006).
Dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE 6(9), e24438 (2011).
Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217-1256 (2010).
Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: Role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J. Control. Release 79(1-3), 29-40 (2002).
Platt CD, Ma JK, Chalouni C et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl Acad. Sci. USA 107(9), 4287-4292 (2010).
Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2), 315-322 (2005).
Panyam M J, Zhou WENZ, Prabha S, Sahoo SK, Labhase V. Rapid endo-lysosomal escape of poly (dl-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 16(10), 1217-1226 (2002).
Shen H, Ackerman AL, Cody V et al. Enhanced and prolonged cross presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1), 78-88 (2006).
Mollica F, Biondi M, Muzzi S et al. Mathematical modelling of the evolution of protein distribution within single PLGA microspheres: Prediction of local concentration profiles and release kinetics. J. Mater. Sci. Mater. Med. 19(4), 1587-1593 (2007).
Shan X, Yuan Y, Liu C, Tao X, Sheng Y, Xu F. Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles. Biomed. Microdevices 11(6), 1187-1194 (2009).
Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307(5715), 1630-1634 (2005).
Jiang X, Shen C, Rey-Ladino J, Yu H, Brunham RC. Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in chlamydia muridarum antigen presentation and induction of protective immunity. Infect. Immun. 76(6), 2392-2401 (2008).
Mendoza L, Bubeník J, Símová J, Jandlová T, Vonka V, Mikysková R. Prophylactic, therapeutic and anti-metastatic effects of BMDC and DC lines in mice carrying HPV 16-Associated tumours. Int. J. Oncol. 23(1), 243-247 (2003).
Horak D, Babic M, Jendelová P et al. D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug. Chem. 18(3), 635-644 (2007).
Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-Targeted liposomes. ACS Nano 7(4), 2935-2947 (2013).
Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 74(3), 1371-1379 (1998).