Self broadening coefficients and improved line intensities for the n7 band of C2H4 near 10.5 mm, and impact on ethylene retrievals from Jungfraujoch solar spectra
2014 • Colloque commun de la division PAMO "Physique Atomique, Moléculaire et Optique" de la SFP-Société Française de Physique et des JSM "Journées de Spectroscopie Moléculaire" 2014
[en] Ethylene (ethene, C2H4) is a tropospheric pollutant on the Earth, also present as a by-product of methane photochemistry in the atmosphere of outer solar system bodies. Remote sensing of ethylene in the infrared range relies on the 10 mm region. This spectral range corresponds to the excitation of 7 modes of vibration of 12C2H4, 4 of which being infrared active (see Fig. 1 of [1]). The corresponding n10, n7, n4 and n12 bands are located near 826, 949, 1026 and 1442 cm-1, respectively [1]. Among these, the n7 band is the strongest, indeed used for remote sensing measurements of ethylene.
Relying on high-resolution Fourier transform infrared (FTIR) spectra recorded in Brussels, the present work involved extensive measurements of individual line intensities and self broadening coefficients for the n7 band of 12C2H4. Compared to the corresponding information available in the latest edition of the HITRAN spectroscopic database (HITRAN 2012 [2]), the measured line intensities were found to be higher by about 10 % for high J lines in the P branch and lower by about 5 % for high J lines of the R branch, varying between these two limits roughly linearly with the line positions. Test calculations performed in this work indicated that these discrepancies could result from the relative values of the transition moments of the n10, n7 and n12 bands used when the information provided in HITRAN was generated (the transition moment of the n4 band was set to zero). The measured self broadening coefficients exhibit a dependence on both J and Ka, which was modeled empirically. The spectroscopic information for ethylene available in HITRAN 2012 was modified to match the present observations. The impact of these modifications on retrievals of atmospheric ethylene was then evaluated via FTIR retrievals in the 949.0 – 952.0 cm-1 microwindow, from a subset of ground-based high-resolution FTIR solar spectra recorded at the Jungfraujoch station. The new line intensities were found to lead to a reduction of the measured total columns of ethylene by -4.1±0.1 %, compared to the use of HITRAN 2012.
Research Center/Unit :
Service de Chimie Quantique et Photophysique, C.P. 160/09, Université Libre de Bruxelles, 50 avenue F.D. Roosevelt, B-1050 Brussels, Belgium
Disciplines :
Chemistry Space science, astronomy & astrophysics Physics
Author, co-author :
Vander Auwera, Jean; Université Libre de Bruxelles - ULB > Service de Chimie Quantique et Photophysique
Fayt, André; Université Catholique de Louvain - UCL > Laboratoire de Spectroscopie Moléculaire
Tudorie, Marcela; Université Libre de Bruxelles - ULB > Service de Chimie Quantique et Photophysique
Rotger - Languereau, Maud; CNRS - Université de Reims Champagne-Ardenne > Groupe de Spectrométrie Moléculaire et Atmosphérique
Boudon, Vincent; CNRS - Université de Bourgogne > Laboratoire Interdisciplinaire Carnot de Bourgogne
Franco, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Language :
English
Title :
Self broadening coefficients and improved line intensities for the n7 band of C2H4 near 10.5 mm, and impact on ethylene retrievals from Jungfraujoch solar spectra
Publication date :
10 July 2014
Event name :
Colloque commun de la division PAMO "Physique Atomique, Moléculaire et Optique" de la SFP-Société Française de Physique et des JSM "Journées de Spectroscopie Moléculaire" 2014
F.R.S.-FNRS - Fonds de la Recherche Scientifique Belgian Federal Science Policy Office (contract SD/CS/07A, Advanced exploitation of Ground-based measurements for Atmospheric Chemistry and Climate – II)