clay mineralogy; central Asia; Lake Baikal; Quaternary; paleoclimate; lacustrine sedimentation
Abstract :
[en] We investigated the mineralogical composition of two cores recovered on the Academician Ridge (Central Lake Baikal, Siberia). Sedimentological features show that the cores are unaffected by turbidity currents. However, hemipelagic deposition is not continuous, but intermittently disturbed by syn- or post-sediment reworking (e.g., bioturbation, slumps, faulting). Such modes of deposition are consistent with the complex uplift history of the ridge. Bulk mineralogy suggests that terrigenous sediment supplies are constant through glacial/interglacial stages, and diluted by diatom-rich intervals related to warmer interglacial stages. The core stratigraphy is based on the correlation of the diatom zonation and opal abundance with the marine oxygen isotope reference curve SPECMAP. The similar to 8-m cores partly recover the last four interglacial/glacial cycles, i.e., since oxygen isotope stage 8. We test the use of clay minerals as a proxy for paleoclimatic reconstruction. The clays are more weathered during the diatom-rich intervals in agreement with warmer climate conditions. However, the mean clay composition does not change significantly through glacial/interglacial stages. This observation implies that, in the Academician Ridge sediments, a simple smectite/illite ratio (S/I) does not alone provide a reliable indicator of climatic variation. It reflects the complex clay assemblages, especially the smectite group, delivered to Central Lake Baikal. Smectites include primarily illite-smectite mixed layers, made of a mixture of montmorillonite and beidellite. According to their behavior after cation saturation, the illite-smectite mixed layers are primarily transformed smectites, with some neoformed smectites intermittently observed. In addition, Al-smectites occur in minor proportions. We conclude that the S/I ratio has a climatic significance only if it evolves in parallel with the weathering stage of the clays and is confirmed by a change in the composition of the smectites. (C) 2002 Elsevier Science B.V. All rights reserved.
Back, S., De Batist, M., Kirillov, P., Strecker, M.R., Vanhauwaert, P., 1998. The Frolika Fan: a large Pleistocene glaciolacustrine outwash-fan in northern Lake Baikal, Siberia. J. Sediment. Res. 68, 841-849.
Back, S., De Batist, M., Strecker, M.R., Vanhauwaert, P., 1999. Quaternary depositional systems in Northern Lake Baikal, Siberia. J. Geol. 107, 1-12.
Badaut, D., Risacher, F., Paquet, H., Eberhart, J.P., Weber, F., 1983. Néoformation de minéraux argileux à partir de frustules de diatomées: le cas de l'Altiplano bolivien. C. R. Acad. Paris 289, 1191-1193.
Bangs, M., Battarbee, R.W., Flower, R.J., Jewson, D., Lees, J.A., Sturm, M., Vologinova, E., Mackay, A.W., 2000. Climate change in Lake Baikal: diatom evidence in an area of continuous sedimentation. Int. J. Earth Sci. 89, 251-259.
BDP-Members, 1997. Continuous paleoclimate record of last 5 Ma from Lake Baikal, Siberia. EOS Trans. Am. Geophys. Union 78, 597-604.
Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 76, 803-832.
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A., Hall, I.R., 1998. Factors governing abundance of hydrolysable amino acids in the sediments from the NW European Continental margin (47-50°N). Prog. Oceanogr. 42, 145-164.
Bradbury, J.P., Bezrukova, Ye.V., Chernyaeva, G.P., Colman, S.M., Khursevich, G., King, J.W., Likoshway, Ye.V., 1994. A synthesis of post-glacial diatom records from Lake Baikal. J. Paleolimnol. 10, 213-252.
Carmouze, J.P., Pédro, G., Berrier, J., 1977. Sur la nature des smectites de néoformation du lac Tchad et leur distribution spatiale en fonction des conditions hydrogéochimiques. C. R. Acad. Sci. Paris 284, 615-618.
Chamley H., 1989. Clay Sedimentology. Springer Verlag, Heidelberg, 623 pp.
Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W., Williams, D.F., 1995. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378, 769-771.
Cook, H.E., Johnson, P.D., Matti, J.C., Zemmels, I., 1975. Methods of sample preparation and x-ray diffraction analysis in x-ray mineralogy laboratory, In: Kaneps, A.G. et al. (Eds.), Init. Rep. DSDP XXVIII. Printing Office, Washington, DC, pp. 997-1007.
De Batist, M., 1999. Recent and sub-recent sedimentation in Lake Baikal. Insights from seismic records. In: Gesellschaft für Erdkunde zu Berlin (GFE), Baikal Symposium and 1st Baik-Sed Workshop, 18-22/11/99, Gesellschaft für Erdkunde zu Berlin (GFE), Berlin. pp. 28-29.
Demske, D., Mohr, B., Oberhaensli, H., 2000. Paleoclimatic changes from 3.6 to 2.2 Ma BP derived from palynological studies on Lake baikal sediments. In: Minoura, K. (Ed.), Lake Baikal: a Mirror in Time and Space for Understanding Global Change Processes. Elsevier, Amsterdam, pp. 85-89.
Dodson J., Lui T., 1995. PEP II: the Austral-Asian Transect. In: Palaeoclimates of the Northern and Southern Hemispheres. Pages Rep. Ser. 95, 43-64.
Fagel, N., Debrabant, P., André, L., 1994. Clay supplies in the Central Indian Basin since the Late Miocene: climatic or tectonic control? Mar. Geol. 122, 151-172.
Galazii, G.I. (Ed.) 1993. Baikal Atlas. Possiskaja Adamemija nauk Sibirskoje otdeljenije mezhvedomstvennii nautchnii soviet, po programme 'Sibir". Federalnaja sluzhba geodezii i kartografii Rossii, Moskva, pp. 1-160.
Grachev, M.A., Vorobyova, S.S., Likhoshway, Ye.V., Goldberg, E.L., Ziborova, G.A., Levina, O.V., Khlystov, O.M., 1998. A high-resolution diatom record of the paleoclimates of East Siberia for the last 2.5 My from Lake Baikal. Quat. Sci. Rev. 17, 1101-1106.
Granina, L.Z., Karabanov, E.B., Shimaraeva, M.K., Williams, D.F., Kuptsov, V.M., 1992. Biogenic silica of Baikal bottom sediments used for palaeo reconstruction. Int. Proj. Palaeolimnol. Lake Cenozoic Clim. Newsl. 6, 53-59.
Horiuchi, K., Minoura, K., Hoshino, K., Oda, T., Nakamura, T., Kawai, T., 2000. Paleoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 157, 95-108.
Hutchinson, D.R., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A., Klitford, K.D., 1992. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 21, 589-592.
Jones, B.F., Browser, C.J., 1978. The mineralogy and related chemistry of lake sediments. In: Lerman A. (Ed.), Lakes. Chemistry, Geology, Physics. Springer, New York, pp. 194-235.
Karabanov, E.B., Prokopenko, A.A., Williams, D.F., Khursevich, G.K., 2000. A new record of Holocene climate change from the bottom sediments of Lake Baikal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 156, 211-224.
Kaz'min, V.G., Golmshtok, A.Y., Moore, T., Hutchinson, D., Scholz, C., Weber, E., 1995. Structure and development of the Akademichesky ridge area (Baikal rift) according to seismic investigations. Russ. Geol. Geophys. 36, 155-166.
Kuzmin, M.I., Karabanov, E.B., Prokopenko, A.A., Gelety, V.F., Antipin, V.S., Williams, D.F., Gvozdkov, A.A., 2000. Sedimentation processes and new age constraints on rifting stages in Lake Baikal: the results of the deep-water drilling. Int. J. Earth Sci. 89, 183-192.
Likhoshway, Y.V., 1998. Fossil endemic centric diatoms from Lake Baikal. Upper pleistocene complexes. In: Manami, Idei, Koizumi (Eds.), Proc. 14th Int. Diatom Symp., 1996. Koeltz Sci. Books, Koenigstein, pp. 613-628.
Lim, C.H., Jackson, M.L., 1986. Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner. 34, 346-352.
Mackay, A.W., Flower, R.J., Rose, N.L., Kuzmina, A.E., Granina, L.Z., Appleby, P.G., Boyle, J.F., Battarbee, R.W., 1998. Recent trends in diatom succession in surface sediments from Lake Baikal and their relation to atmospheric pollution and to climate change. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 353, 1011-1055.
Mats, V.D., Khlystov, O.M., De Batist, M., Camicola, S., Lomonosova, T.K., Klimansky, A., 2000. Evolution of the Academician Ridge accommodation zone in the central part of the Baikal Rift, from high-resolution seismic profiling and geological field investigations. Int. J. Earth Sci. 89, 229-250.
Melles, M., Grobe, H., Hubberten, H.W., 1995. Mineral composition of the clay fraction in the 100m Core BDP-93-2 from Lake Baikal - preliminary results. IPPCCE Newsl. 9, 17-22.
Minoura K., 2000. Lake Baikal: a Mirror in Time and Space for Understanding Global Change Processes. Elsevier, Amsterdam, 332 pp.
Moore D.M., R.C. Reynolds, 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 pp.
Moore, T.C., Klitgord, K.D., Golmshtok, A.J., Weber, E., 1997. Sedimentation and subsidence patterns in the central and north basins of lake baikal from seismic stratigraphy. Geol. Soc. Am. Bull. 109, 746-766.
Müller, G., Forstner, U., 1973. Recent iron ore formation in lake Malawi, Africa. Mineral. Depos. 8, 278-290.
Nelson, C.H., Karabanov, E.B., Colman, S.M., 1995. Late Quaternary Lake Baikal turbidite systems, Russia. In: Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucci, F., Smith, R.D.A. (Eds.), Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Chapman and Hall, London, pp. 29-33.
Nelson, C.H., Karabanov, E.B., Colman, S.M., Escutia, C., 1999. Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia. Geology 27, 163-166.
Pédro, G., 1976. Sols argileux et argiles. Eléments généraux en vue d'une introduction à leur étude. Sci. Sol 2, 69-84.
Prokopenko, A.A., Williams, D.F., Karabanov, E.B., Khursevich, G.K., 1999. Response of Lake baikal ecosystem to climate forcing and pCO2 change over the last glacial/interglacial transition. Earth Planet. Sci. Lett. 172, 239-253.
Rasskazov, S.V., 1994. Magmatism and geodynamics of the eastern Siberia rift system. Bull. Cent. Rech. Explor. Pau 18, 437-452.
Retke, R.C., 1981. Probable burial diagenesis and provenance effects on Dakota group clay mineralogy, Denver Basin. J. Sediment. Petrol. 51, 541-551.
Robert, M., Barshad, I., 1972. Sur les propriétés et la détermination des minéraux argileux 2/1 espansibles (vermiculites-smectites). C. R. Acad. Sci. Paris 275, 1463-1465.
Scholz, C.A., Klitgord, K.D., Hutchinson, D.R., Ten Brink, U.S.T., Zonenshain, L.P., Golmshtok, A.Y., Moore, T.C., 1993. Results of 1992 seismic reflection experiment in Lake Baikal. EOS Trans. Am. Geophys. Union 74, 465-470.
Solotchina, E.P., Prokopenko, A.A., Vasilevsky, A.N., Gavshin, V.M., Kuzmin, M.I., Williams, D.F., 2002. Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay Miner. 37, 105-119.
Thiry, M., 2000. Paleoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev. 49, 201-221.
Thorez, J., 1976. Practical Identification of Clay Minerals. G. Lelotte, Dison.
Thorez, J., 1985. Argillogenesis and the hydrolysis index. Miner. Petrogr. Acta 29, 313-338.
Thorez, J., 1998. Différienciation minéralogique et génétique par DRX des smectites post-saturées au Li et K. In: Réunion spécialisée ASF-SGF, Lille, 20-21/11/1998, Vol. 30. Publ. ASF, Paris, pp. 106-107.
Thorez, J., 2000. Cation-saturated swelling physils: an XRD revisitation. In: Gomes, C. (Ed.), Proc. 1st Latin-American Clay Conf., Funchal, 17-22/9/2000, Madeira, Vol. I. Ass. Port. Argilas, pp. 71-85.
Weaver, C.E., 1989. Clays, Muds, and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam, 819 pp.
Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J., Kuzmin, M.I., 1997. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278, 1114-1117.
Wilson M.J., 1987. Soil smectites and related interstratified minerals: recent developments. In: Schulz, L.G., van Olphen, H., Mumpton F.A. (Eds.), Proc. Int. Clay Conf., Denver, CO, 1985. Clay Min. Soc., Bloomington, IN, pp. 167-173.
Yuretich, R., Melles, M., Sarata, B., Grobe, H., 1998. Clay minerals in the sediments of Lake Baikal: a useful climate proxy. J. Sediment. Res. 69, 588-596.