[en] The management of urban rivers which drain contaminated groundwater is suffering from high uncertainties regarding reliable quantification of groundwater fluxes. Independent techniques are combined for estimating these fluxes towards the Zenne River, Belgium. Measured hydraulic gradients, temperature gradients in conjunction with a 1D-heat and fluid transport model, direct flux measurement with the finite volume point dilution method (FVPDM), and a numerical groundwater flow model are applied, to estimate vertical and horizontal groundwaterfluxes and groundwater–surface-water interaction. Hydraulic gradient analysis, the temperature-based method, and the groundwaterflow model yielded average verticalfluxes of–61,–45 and–40 mm/d, respectively. The negative sign indicates upwardflow to the river. Changes in exchangefluxes are sensitive to precipitation but the river remained gaining during the examined period. The FVPDM, compared to the groundwaterflow model, results in two very high estimates of the horizontal Darcyfluxes (2,600 and 500 mm/d), depending on the depth of application. The obtained results allow an evaluation of the temporal and spatial variability of estimated fluxes, thereby helping to curtail possible consequences of pollution of the Zenne River as final receptor, and contribute to the setup of a suitable remediation plan for the contaminated study site.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Dujardin, Juliette; Vrij Universitiet Brussels - VUB > Department of Hydrology and Hydraulic Engineering
Anibas, Christian; Vrij Universitiet Brussels - VUB > Department of Hydrology and Hydraulic Engineering
Bronders, Jan; Flemish Institute for Technological research - VITO
Jamin, Pierre ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Hamonts, Kelly; Flemish Institute for Technological research - VITO
Dejonghe, Winnie; Flemish Institute for Technological research - VITO
Brouyère, Serge ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Batelaan, Okke; Flinders University > National Centre for Groundwater Reasearch and Training School of Environment
Language :
English
Title :
Combining flux estimation techniques to improve characterization of groundwater–surface-water interaction in the Zenne River, Belgium
Publication date :
2014
Journal title :
Hydrogeology Journal
ISSN :
1431-2174
eISSN :
1435-0157
Publisher :
Springer Science & Business Media B.V., New York, United States - New York
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Flux-based Risk Assessment of Contaminant on Water resources and ECOsystems FRAC-WECO SD/TE/02
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Anderson MP (2005) Heat as a groundwater tracer. Ground Water 43(6):951–968
Anibas C, Fleckenstein J, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady state? using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrol Process 23:2165–2177. doi:10.1002/hyp.7289
Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397(1–2):93–104. doi:10.1016/j.jhydrol.2010.11.036
Bardos P, Lewis A, Nortcliff S, Matiotti C, Marot F, Sullivan TL (2002) Review of decision support tools for contaminated land management, and their use in Europe. Austrian Federal Environment Agency, Vienna on behalf of CLARINET, Vienna
Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface-subsurface water balance. J Hydrol 337:337–355
Baxter C, Hauer FR, Woessner WW (2003) Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Trans A fish 132(3):493–502
Becker MW, Georgian T, Ambrose H, Siniscalchi J, Fredrick K (2004) Estimating flow and flux of groundwater discharge using water temperature and velocity. J Hydrol 296(1–4):221–233. doi:10.1016/j.jhydrol.2004.03.025
Boel S (2008) Hydrogeologische studie van de brownfield-site Vilvoorde-Machelen: grondwaterstromingen – transport [Hydrogeological study of the Vilvoorde-Machelen brownfield: groundwater fluxes and transport]. MSc Thesis, Katholieke Universiteit Leuven, Belgium, 125 pp
Bracken LJ, Croke J (2007) The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Process 21(13):1749–1763. doi:10.1002/hyp.6313
Bronders J, Touchant K, Van Keer I, Patyn J, Provoost J (2007) The characterization of contamination and the role of hydrogeology in the risk management of a mega brownfield site. Proceedings of IAH XXXV Congress: Groundwater and Ecosystems, Lisbon, September 2007, 270 pp
Bronders J, Touchant K, Van Keer I, Patyn J (2008) A risk management plan for the redevelopment of a brownfield site: an example. ConSoil 2008: proceedings of the 10th International UFZ-Deltares TNO Conf. on Soil Water Systems, Milan, June 2008, pp 47–54
Brouyère S (2003) Modeling tracer injection and well-aquifer interactions: a new mathematical and numerical approach. Water Resour Res 39(3):1–5. doi:10.1029/2002WR001813
Brouyère S, Carabin G, Dassargues A (2005) Influence of injection conditions on field tracer experiments. Ground Water 43(3):389–400. doi:10.1111/j.1745-6584.2005.0041.x
Brouyère S, Batlle-Aguilar J, Goderniaux P, Dassargues A (2008) A new tracer technique for monitoring groundwater fluxes: the finite volume point dilution method. J Contam Hydrol 95:121–140
Butler JJ (1998) The design, performance and analysis of slug tests. Lewis, Boca Raton, FL, 262 pp
Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits. Water Resour Res 39(6):1141. doi:10.1029/2002WR001383
Carey SK, Quinton WL (2005) Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment. Hydrol Process 19(1):95–114
Cey EE, Rudolph DL, Parkin GW, Aravena R (1998) Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J Hydrol 210:21–37
Chen XH (2000) Measurement of streambed hydraulic conductivity and its anisotropy. Environ Geol 39(12):1317–1324
Cirone PA, Duncan PB (2000) Integrating human health and ecological concerns in risk assessments. J Hazard Mater 78(1–3):1–17
Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44, W00D10. doi: 10.1029/2008WR006996
DOV (2008) Databank Ondergrond Vlaanderen [Database on the subsurface in Flanders]. Departement Mobiliteit en Openbare Werken, Vlaamse Gemeenschap. http://dov.vlaanderen.be. Accessed 18 Jan 2011
Drost W, Klotz D, Arnd K, Heribet M, Neumaier F, Rauert W (1968) Point dilution methods of investigation ground water flow by means of radioisotopes. Water Resour Res 4(1):125–146
Dujardin J, Batelaan O, Canters F, Boel S, Anibas C, Bronders J (2011) Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield. Sci Total Environ 409:800–809. doi:10.1016/j.scitotenv.2010.10.055
EC (2006) Soil protection: the story behind the strategy. European Commission, Brussels, 28 pp
EEA (2007) CSI 015: progress in management of contaminated sites—assessment published Aug 2007. European Environment Agency, Copenhagen. http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/progress-in-management-of-contaminated-1. Accessed 24 Sept 2008
EU (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJEC L327, 72 pp
Fleckenstein J, Anderson M, Fogg G, Mount J (2004) Managing surface water–groundwater to restore fall flows in the Consumnes River. J Water Resour Plann Management-ASCE 130 (4):301–310. doi: 10.1016/(ASCE)0733-9496(2004)130:4(301)
Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ
Harbaugh A, Banta E, Hill M, McDonald M (2000) MODFLOW-2000, The U.S. Geological Survey modular groundwater model: user guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00-92
Haveley E, Moser H, Zellhofer O, Zuber E (1967) Borehole dilution techniques: a critical review. Isotopes in Hydrology, IAEA, Vienna
Hayashi M, Rosenberry DO (2002) Effects of groundwater exchange on the hydrology and ecology of surface water. Ground Water 40(3):309–316
Hyun Y, Kim H, Lee SS, Lee KK (2011) Characterizing streambed water fluxes using temperature and head data on multiple scales in Munsan stream, South Korea. J Hydrol 402:377–387
Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887
Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical model using temperature time series. J Hydrol 336:1–16. doi:10.1016/j.jhydrol.2006.12.003
Kikuchi CP, Ferré TPA, Welker JM (2012) Spatially telescoping measurements for improved characterization of ground water–surface water interactions. J Hydrol 446–447:1–12. doi:10.1016/j.jhydrol.2012.04.002
KMI (2013) Koninklijk Meteorologisch Instituut (RMI Royal Meteorological Institute), Brussels, Belgium. http://www.kmi.be. Accessed 8 Oct 2013
Lapham WM (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water-Suppl Pap 2337
Lautz LK (2010) Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46, W01509. doi:10.1029/2009WR007917
Lexartza-Artza I, Wainwright J (2009) Hydrological connectivity: linking concepts with practical implications. Catena 79:146–152. doi:10.1016/j.catena.2009.07.001
Loheide SP, Gorelick SM (2006) Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environ Sci Technol 40(10):3336–3341. doi:10.1021/es0522074
McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffmann PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4):301–312
Morris DA, Johnson AI (1967) Summary of hydrological and physical properties of rock and soil materials as analyzed by the Hydrological Laboratory of the U.S. Geological Survey 1948–1960. USGS, Reston, VA
OVAM (2003–2006) Veiligheids: en voorzorgsmaatregelen te Machelen, voormalige Biolux site [Security and precautionary measures for the formal Biolux site in Machelen]. Website OVAM. http://www.ovam.be/machelen-biochim-site. Accessed 27 March 2009
Rosenberry DO, LaBaugh JW (2008) Field techniques for estimating water fluxes between surface water and groundwater. US Geoll Surv Tech Methods 4-D2, 128 pp
Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307. doi:10.1016/j.jhydrol.2007.08.022
Schmidt C, Kalbus E, Krieg R, Bayer-Raich M, Leschik S, Reinstorf F, Martienssen M, Schirmer M (2008) Schadstoffmassenströme zwischen Grundwasser, Flussbettsedimenten und Oberflächenwasser am regional kontaminierten Standort Bitterfeld [Contaminant mass flows between groundwater, riverbed sediments and surface water at the regional contaminated site in Bitterfeld]. Grundwasser 13:133–146. doi:10.1007/s00767-008-0076-7
Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures: implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319. doi:10.1016/j.advwatres.2010.04.007
Smith JWN (2005) Groundwater-surface water interactions in the hyporheic zone. Science report SC030155/SR1, Environment Agency, Bristol, UK
Soetaert K, De Clippele V, Herman P (2002) FEMME, a flexible environment for mathematically modeling the environment. Ecol Model 151(2–3):177–193
Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67
Stonestrom DA, Constantz J (2003) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260, 105 pp
Triska FJ, Duff JH, Avanzino RJ (1993) The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial aquatic interface. Hydrobiologica 251(1–3):167–184
Unland NP, Cartwright I, Andersen MS, Rau GC, Reed J, Gilfedder BS, Atkinson AP, Hofmann H (2013) Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach. Hydrol Earth Syst Sci 17:3437–3453. doi:10.5194/hess-17-3437-2013
Van Keer I, Lookman R, Bronders J, Touchant K, Patyn J, Joris I, Wilczek D, Vos J, Dewilde J, Van de Wiele K, Maebe P, De Naeyer F (2009) Examples of risk management in Flanders for large scale groundwater contamination. In: Hlavinek P, Popovska C, Marsalek J, Mahrikova I, Kukharchyk T (eds) Risk management of water supply and sanitation systems impaired by operational failures, natural disasters and war conflicts. NATO Security through Science Series, Sub-Series C: Environmental Security, Rowan and Littlefield, Lanham, MD, pp 241–250
Woldeamlak ST (2007) Spatio-temporal impacts of climate and land-use changes on the groundwater and surface water resources of a lowland catchment, PhD Thesis, Vrije Universiteit Brussels, Belgium