Reference : Advanced Aeroservoelastic Modeling for Horizontal axis Wind Turbines
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Energy
Engineering, computing & technology : Aerospace & aeronautics engineering
http://hdl.handle.net/2268/170181
Advanced Aeroservoelastic Modeling for Horizontal axis Wind Turbines
English
Prasad, Chandra Shekhar mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
Chen, Qiong-zhong [Université de Liège - ULiège > Département d'aérospatiale et mécanique > > >]
Dimitriadis, Grigorios mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
Bruls, Olivier mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques >]
D'Ambrosio, Flavio [LMS Samtech > > > >]
Jul-2014
Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014
Cunha, A.
Caetano, E.
Riberio, P.
Müller, G.
3097-3104
Yes
No
International
978-972-752-165-4
9th International Conference on Structural Dynamics, EURODYN 2014
from 30-06-2014 to 02-07-2014
Porto
Portugal
[en] Horizontal AxisWind Turbines ; Aeroservoelasticity ; Non-linear Finite Elements ; Unsteady Vortex Lattice Method ; Doubly Fed Induction Generator
[en] This paper describes the development of a complete methodology for the unsteady aeroelastic and aeroservoelastic modeling of horizontal axis wind turbines at the design stage. The methodology is based on the implementation of unsteady aerodynamic modeling, advanced control strategies and nonlinear finite element calculations in the S4WT wind turbine design package. The aerodynamic modeling is carried out by means of the unsteady Vortex Lattice Method, including a free wake model.
The complete model also includes a description of a doubly fed induction generator and its control system for variable speed operation and enhanced power output. The S4WT software features a non-linear finite element solver with multi-body dynamics capability. The complete methodology is used to perform complete aeroservoelastic simulations of a 2MW wind turbine prototype model. The interaction between the three components of the approach is carefully analyzed and presented here.
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Energie
DYNAWIND
Researchers ; Professionals
http://hdl.handle.net/2268/170181

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
12 EURODYN 2014.pdfPublisher postprint2.79 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.