Aravanis AM, Pyle JL, and Tsien RW. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423: 643-647, 2003.
Behrends JC and ten Bruggencate G. Changes in quantal size distributions upon experimental variations in the probability of release at striatal inhibitory synapses. J Neurophysiol 79: 2999-3011, 1998.
Bekkers JM, Richerson GB, and Stevens CF. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci USA 87: 5359-5362, 1990.
Borges S, Gleason E, Turelli M, and Wilson M. The kinetics of quantal transmitter release from retinal amacrine cells. Proc Natl Acad Sci USA 92: 6896-6900, 1995.
Brager DH, Capogna M, and Thompson SM. Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. J Physiol 541: 545-559, 2002.
Bruns D, Riedel D, Klingauf J, and Jahn R. Quantal release of serotonin. Neuron 28: 205-220, 2000.
Burger PM, Mehl E, Cameron PL, Maycox PR, Baumert M, Lottspeich F, De Camilli P, and Jahn R. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 3: 715-720, 1989.
Burgoyne RD, Fisher RJ, Graham ME, Haynes LP, and Morgan A. Control of membrane fusion dynamics during regulated exocytosis. Biochem Soc Trans 29: 467-472, 2001.
Busch C and Sakmann B. Synaptic transmission in hippocampal neurons: numerical reconstruction of quantal IPSCs. Cold Spring Harb Symp Quant Biol 55: 69-80, 1990.
Colliver TL, Pyott SJ, Achalabun M, and Ewing AG. VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20: 5276-5282, 2000.
Dobrunz LE and Stevens CF. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18: 995-1008, 1997.
Edwards FA, Konnerth A, and Sakmann B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J Physiol 430: 213-249, 1990.
Engel D, Endermann U, Frahm C, Heinemann U, and Draguhn A. Acute effects of gamma-vinyl-GABA on low-magnesium evoked epileptiform activity in vitro. Epilepsy Res 40: 99-107, 2000.
Engel D, Pahner I, Schulze K, Frahm C, Jarry H, Ahnert-Hilger G, and Draguhn A. Plasticity of rat central inhibitory synapses through GABA metabolism. J Physiol 535: 473-482, 2001.
Esclapez M and Houser CR. Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J Comp Neurol 412: 488-505, 1999.
Fagiolini M and Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404: 183-186, 2000.
Feldblum S, Ackermann RF, and Tobin AJ. Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron 5: 361-371, 1990.
Fonnum F, Fykse EM, and Roseth S. Uptake of glutamate into synaptic vesicles. Prog Brain Res 116: 87-101, 1998.
Frerking M, Borges S, and Wilson M. Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15: 885-895, 1995.
Galarreta M and Hestrin S. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci I: 587-594, 1998.
Gandhi SP and Stevens CF. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423: 607-613, 2003.
Garraghty PE, LaChica EA, and Kaas JH. Injury-induced reorganization of somatosensory cortex is accompanied by reductions in GABA staining. Somatosens Mot Res 8: 347-354, 1991.
Gierdalski M, Jablonska B, Smith A, Skangiel-Kramska J, and Kossut M. Deafferentation induced changes in GAD67 and GluR2 mRNA expression in mouse somatosensory cortex. Brain Res Mol Brain Res 71: 111-119, 1999.
Gillis KD, Mossner R, and Neher E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16: 1209-1220, 1996.
Golan H and Grossman Y. Block of glutamate decarboxylase decreases GABAergic inhibition at the crayfish synapses: possible role of presynaptic metabotropic mechanisms. J Neurophysiol 75: 2089-2098, 1996.
Graham ME, O'Callaghan DW, McMahon HT, and Burgoyne RD. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci USA 99: 7124-7129, 2002.
Gram L, Larsson OM, Johnsen AH, and Schousboe A. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2: 87-95, 1988.
Hammond DL. GABA(B) receptors: new tricks by an old dog. Curr Opin Pharmacol 1: 26-30, 2001.
Hendry S and Carder RK. Organization and plasticity of GABA neurons and receptors in monkey visual cortex. Prog Brain Res 90: 477-502, 1992.
Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, and Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504-1508, 1998.
Isaacson JS and Hille B. GABA(B)-mediated presynaptic inhibition of excitatory transmission and synaptic vesicle dynamics in cultured hippocampal neurons. Neuron 18: 143-152, 1997.
Ishikawa T, Sahara Y, and Takahashi T. A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 16: 613-621, 2002.
Kamermans M and Werblin F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci 12: 2451-2463, 1992.
Kirischuk S and Grantyn R. A readily releasable pool of single inhibitory boutons in culture. Neuroreport 11: 3709-3713, 2000.
Kish PE, Fischer-Bovenkerk C, and Ueda T. Active transport of γ-aminobutyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci USA 86: 3877-3881, 1989.
Klingauf J, Kavalali ET, and Tsien RW. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394: 581-585, 1998.
Kraszewski K and Grantyn R. Unitary, quantal and miniature GABA-activated synaptic chloride currents in cultured neurons from the rat superior colliculus. Neuroscience 47: 555-570, 1992.
Kraushaar U and Jonas P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 20: 5594-5607, 2000.
Liu G and Tsien RW. Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34: 1407-1421, 1995.
Löscher W, Jackel R, and Muller F. Anticonvulsant and proconvulsant effects of inhibitors of GABA degradation in the amygdala-kindling model. Eur J Pharmacol 163: 1-14, 1989.
Machado JD, Morales A, Gomez JF, and Borges R. cAMP modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60: 514-520, 2001.
Machado JD, Segura F, Brioso MA, and Borges R. Nitric oxide modulates a last step of exocytosis. J Biol Chem 275, 20274-20279, 2000.
Masson J, Sagne C, Hamon M, and El Mestikawy S. Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51: 439-464, 1999.
Matthews G, Ayoub GS, and Heidelberger R. Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J Neurosci 14: 1079-1090, 1994.
Matveev V and Wang XJ. Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. J Neurosci 20: 1575-1588, 2000.
McIntire SL, Reimer RJ, Schuske K, Edwards RH, and Jorgensen EM. Identification and characterization of the vesicular GABA transporter. Nature 389: 870-876, 1997.
Misgeld U, Bijak M, and Jarolimek W. A physiological role for GABA B receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46: 423-462, 1995.
Murphy DD, Cole NB, Greenberger V, and Segal M. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18: 2550-2559, 1998.
Murthy VN and Stevens CF. Synaptic vesicles retain their identity through the endocytic cycle. Nature 392: 497-501, 1998.
Murthy VN and Stevens CF. Reversal of synaptic vesicle docking at central synapses. Nat Neurosci 2: 503-507, 1999.
Naves LA and Van der Kloot W. Transmitter packaging at frog neuromuscular junctions exposed to anticholinesterases; the role of second-stage acetylcholine loading. J Neurophysiol 76: 2614-2625, 1996.
Naves LA and Van der Kloot W. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular function. J Physiol 532: 637-647, 2001.
Nusser Z, Cull-Candy S, and Farrant M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 19: 697-709, 1997.
Oheim M, Loerke D, Stuhmer W, and Chow RH. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 28: 91-101, 1999.
Overstreet LS and Westbrook GL. Paradoxical reduction of synaptic inhibition by vigabatrin. J Neurophysiol 86: 596-603, 2001.
Palay S and Chan-Palay V. Cerebellar Cortex: Cytology and Organization. New York: Springer-Verlag, 1974, p. 96.
Palfrey HC and Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step. Neuroscience 83: 969-989, 1998.
Pothos EN, Davila V, and Sulzer D. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18: 4106-4118, 1998a.
Pothos EN, Przedborski S, Davila V, Schmitz Y, and Sulzer D. D2-like dopamine autoreceptor activation reduces quantal size in PC 12 cells. J Neurosci 18: 5575-5585, 1998b.
Pouzat C and Marty A. Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J Neurosci 19: 1675-1690, 1999.
Pyott SJ and Rosenmund C. The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons. J Physiol 539: 523-535, 2002.
Rodriguez-Moreno A, Herreras O, and Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19: 893-901, 1997.
Rohrbacher J, Jarolimek W, Lewen A, and Misgeld U. GABAB receptor-mediated inhibition of spontaneous inhibitory synaptic currents in rat midbrain culture. J Physiol 500: 739-749, 1997.
Ropert N, Miles R, and Korn H. Characteristics of miniature inhibitory postsynaptic currents in CAI pyramidal neurones of rat hippocampus. J Physiol 428: 707-722, 1990.
Rosenmund C and Stevens CF. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16: 1197-1207, 1996.
Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, and Smith SJ. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11: 713-724, 1993.
Ryan TA and Smith SJ. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14: 983-989, 1995.
Sahara Y and Takahashi T. Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol 536: 189-197, 2001.
Sara Y, Mozhayeva MG, Liu X, and Kavalali ET. Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J Neurosci 22: 1608-1617, 2002.
Schmitz D, Frerking M, and Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27: 327-338, 2000.
Smith C, Moser T, Xu T, and Neher E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20: 1243-1253, 1998.
Song HJ, Ming GL, Fon E, Bellocchio E, Edwards RH, and Poo MM. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18: 815-826, 1997.
Stasheff SF, Mott DD, and Wilson WA, Axon terminal hyperexcitability with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. J Neurophysiol 70: 976-984, 1993.
Stevens CF and Sullivan JM. Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21: 885-893, 1998.
Stevens CF and Tsujimoto T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci USA 92: 846-849, 1995.
Stevens CF and Wesseling JF. Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21: 415-424, 1998.
Stevens CF and Wesseling JF. Identification of a novel process limiting the rate of synaptic vesicle cycling at hippocampal synapses. Neuron 24: 1017-1028, 1999.
Stevens CF and Williams JH. "Kiss and run" exocytosis at hippocampal synapses. Proc Natl Acad Sci USA 97: 12828-12833, 2000.
Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375: 645-653, 1995.
Sulzer D and Pothos EN. Regulation of quantal size by presynaptic mechanisms. Rev Neurosci 11: 159-212, 2000.
Taylor CP, Vartanian MG, Andruszkiewicz R, and Silverman RB. 3-Alkyl GABA and 3-alkylglutamic acid analogues: two new classes of anticonvulsant agents. Epilepsy Res 11: 103-110, 1992.
Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, and Nicoll R. The role of the synthetic GAD65 in the control of neuronal γ-aminobutyric acid release. Proc Natl Acad Sci USA 96: 12911-12916, 1999.
Valtorta F, Meldolesi J, and Fesce R. Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol 11: 324-328, 2001.
Van der Kloot W. Spontaneous and uniquantal-evoked endplate currents in normal frogs are indistinguishable. J Physiol 492: 155-162, 1996.
Van der Kloot W, Colasante C, Cameron R and Molgo J. Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J Physiol 523, 247-258, 2000.
Van der Kloot W, Molgo J, Cameron R, and Colasante C. Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased. J Physiol 541: 385-393, 2002.
von Gersdorff H and Matthews G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J Neurosci 17: 1919-1927, 1997.
Wang C and Zucker RS. Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21: 155-167, 1998.
Wang LY and Kaczmarek LK. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394: 384-388, 1998.
Wang Y and Floor E. Dynamic storage of glutamate in rat brain synaptic vesicles. Neurosci Lett 180: 175-178, 1994.
Williams J. How does a vesicle know it is full? Neuron 18: 683-686, 1997.
Wu Y, Wang W, and Richerson GB. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89: 2021-2034, 2003.
Yamashita T, Ishikawa T, and Takahashi T. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse. J Neurosci 23: 3633-3638, 2003.
Yee JM, Agulian S, and Kosics JD. Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve. Epilepsy Res 29: 195-200, 1998.
Zakharenko SS, Zablow L, and Siegelbaum SA. Altered presynaptic vesicle release and cycling during mGluR-dependent LTD. Neuron 35: 1099-1110, 2002.
Zhou Q, Petersen CC, and Nicoll RA. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 525: 195-206, 2000.
Zucker RS and Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 64: 355-405, 2002.