[en] Background. Platelet activation requires sweeping morphological changes,
supported by contraction and remodelling of platelet actin cytoskeleton. In various
other cell types, AMP-activated protein kinase (AMPK) controls the phosphorylation
state of cytoskeletal targets.
Objective. We hypothesized that AMPK is activated during platelet aggregation and
contributes to the control of cytoskeletal targets.
Results. We found that AMPK-α1 was mainly activated by thrombin and not by other
platelet agonists in purified human platelets. Thrombin activated AMPK-α1 ex vivo
via a Ca2+/calmodulin-dependent kinase kinase β (CAMKKβ)-dependent pathway.
Pharmacological inhibition of CAMKKβ blocked thrombin-induced platelet
aggregation and counteracted thrombin-induced phosphorylation of several
cytoskeletal proteins, namely, regulatory myosin light chains (MLC), cofilin and
vasodilator-stimulated phosphoprotein (VASP), three key elements involved in actin
cytoskeleton contraction and polymerization. Platelets isolated from mice lacking
AMPK-α1 exhibited reduced aggregation in response to thrombin, associated with a
defect in MLC, cofilin and VASP phosphorylation and actin polymerization. More
importantly, we show for the first time that AMPK pathway was activated in platelets
of patients undergoing major cardiac surgery, in a heparin-sensitive manner.
Conclusion. AMPK-α1 is activated by thrombin in human platelets. It controls
phosphorylation of key cytoskeletal targets and actin cytoskeleton remodelling during
platelet aggregation.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Onselaer, Marie-Blanche; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
Oury, Cécile ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > GIGA-R : Génétique humaine
Hunter, Roger W; Nestlé Institute of Health Sciences SA, Campus EPFL, Lausanne, Suisse
Eeckhoudt, Stéphane; Université Catholique de Louvain - UCL > Department of Hematology
Barile, Nicolas; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
LECUT, Christelle ; Centre Hospitalier Universitaire de Liège - CHU > Hématologie biologique et immuno hématologie
Morel, Nicole; Université Catholique de Louvain - UCL > Institute of Neuroscience, Laboratory of Cell Physiology, Brussels
Jacquet, Luc-Marie; Université Catholique de Louvain - UCL > Cliniques Universitaires Saint-Luc, Cardiovascular Intensive Care
Bertrand, Luc; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
Sakamoto, Kei; Nestlé Institute of Health Sciences SA, Campus EPFL, Lausanne, Switzerland
Vanoverschelde, Jean-Louis; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
Beauloye, Christophe; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
Horman, Sandrine; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire
Jackson SP. The growing complexity of platelet aggregation. Blood 2007; 109: 5087-95.
Johnson GJ, Leis LA, Krumwiede MD, White JG. The critical role of myosin IIA in platelet internal contraction. J Thromb Haemost 2007; 5: 1516-29.
Fox JE. Regulation of platelet function by the cytoskeleton. Adv Exp Med Biol 1993; 344: 175-85.
Getz TM, Dangelmaier CA, Jin J, Daniel JL, Kunapuli SP. Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets. J Thromb Haemost 2010; 8: 2283-93.
Pandey D, Goyal P, Dwivedi S, Siess W. Unraveling a novel Rac1-mediated signaling pathway that regulates cofilin dephosphorylation and secretion in thrombin-stimulated platelets. Blood 2009; 114: 415-24.
Hansen SD, Mullins RD. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J Cell Biol 2010; 191: 571-84.
Pula G, Schuh K, Nakayama K, Nakayama KI, Walter U, Poole AW. PKCdelta regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood 2006; 108: 4035-44.
Benz PM, Blume C, Seifert S, Wilhelm S, Waschke J, Schuh K, Gertler F, Munzel T, Renne T. Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci 2009; 122: 3954-65.
Thomson DM, Ascione MP, Grange J, Nelson C, Hansen MD. Phosphorylation of VASP by AMPK alters actin binding and occurs at a novel site. Biochem Biophys Res Commun 2011; 414: 215-19.
Stahmann N, Woods A, Carling D, Heller R. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol 2006; 26: 5933-45.
Witters LA, Kemp BE, Means AR. Chutes and ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 2006; 31: 13-16.
Miranda L, Carpentier S, Platek A, Hussain N, Gueuning MA, Vertommen D, Ozkan Y, Sid B, Hue L, Courtoy PJ, Rider MH, Horman S. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells. Biochem Biophys Res Commun 2010; 396: 656-61.
Blume C, Benz PM, Walter U, Ha J, Kemp BE, Renne T. AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 2007; 282: 4601-12.
Horman S, Morel N, Vertommen D, Hussain N, Neumann D, Beauloye C, El Najjar N, Forcet C, Viollet B, Walsh MP, Hue L, Rider MH. AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J Biol Chem 2008; 283: 18505-12.
Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 2004; 279: 1070-9.
Sakamoto K, Goransson O, Hardie DG, Alessi DR. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 2004; 287: E310-17.
Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118: e101-11.
Randriamboavonjy V, Isaak J, Fromel T, Viollet B, Fisslthaler B, Preissner KT, Fleming I. AMPK alpha2 subunit is involved in platelet signaling, clot retraction, and thrombus stability. Blood 2010; 116: 2134-40.
Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3: 1800-14.
Spalton JC, Mori J, Pollitt AY, Hughes CE, Eble JA, Watson SP. The novel Syk inhibitor R406 reveals mechanistic differences in the initiation of GPVI and CLEC-2 signaling in platelets. J Thromb Haemost 2009; 7: 1192-9.
Xiang B, Zhang G, Stefanini L, Bergmeier W, Gartner TK, Whiteheart SW, Li Z. The Src family kinases and protein kinase C synergize to mediate Gq-dependent platelet activation. J Biol Chem 2012; 287: 41277-87.
Green MF, Scott JW, Steel R, Oakhill JS, Kemp BE, Means AR. Ca2+/calmodulin-dependent protein kinase kinase beta is regulated by multisite phosphorylation. J Biol Chem 2011; 286: 28066-79.
Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023-38.
Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villen J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 2011; 44: 878-92.
Aslan JE, McCarty OJ. Rho GTPases in platelet function. J Thromb Haemost 2013; 11: 35-46.
Lee YM, Lee JO, Jung JH, Kim JH, Park SH, Park JM, Kim EK, Suh PG, Kim HS. Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem 2008; 283: 33969-74.
Bae HB, Zmijewski JW, Deshane JS, Tadie JM, Chaplin DD, Takashima S, Abraham E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB J 2011; 25: 4358-68.
You GY, Lee JO, Kim JH, Kim N, Lee SK, Moon JW, Jie S, Lee HJ, Kim SJ, Park SH, Kim HS. Tiam-1, a GEF for Rac1, plays a critical role in metformin-mediated glucose uptake in C2C12 cells. Cell Signal 2013; 12: 2558-65.