Micro-finite element model; Micro-computed tomography; Bone tissue regeneration; Mesenchymal stem cells
Abstract :
[en] Stem cell-mediated gene therapy for fracture repair, utilizes genetically engineered mesenchymal stem cells (MSCs) for the induction of bone growth and is considered a promising approach in skeletal tissue regeneration. Previous studies have shown that murine nonunion fractures can be repaired by implanting MSCs over-expressing recombinant human bone morphogenetic protein-2 (rhBMP-2). Nanoindentation studies of bone tissue induced by MSCs in a radius fracture site indicated similar elastic modulus compared to intact murine bone, eight weeks post-treatment. In the present study we sought to investigate temporal changes in microarchitecture and biomechanical properties of repaired murine radius bones, following the implantation of MSCs. High-resolution micro-computed tomography (micro-CT) was performed 10 and 35 weeks post MSC implantation, followed by micro-finite element (micro-FE) analysis. The results have shown that the regenerated bone tissue remodels over time, as indicated by a significant decrease in bone volume, total volume, and connectivity density combined with an increase in mineral density. In addition, the axial stiffness of limbs repaired with MSCs was 2-1.5 times higher compared to the contralateral intact limbs, at 10 and 35 weeks post-treatment. These results could be attributed to the fusion that occurred in between the ulna and radius bones. In conclusion, although MSCs induce bone formation, which exceeds the fracture site, significant remodeling of the repair callus occurs over time. In addition, limbs treated with an MSC graft demonstrated superior biomechanical properties, which could indicate the clinical benefit of future MSC application in nonunion fracture repair. (C) 2010 Elsevier Ltd. All rights reserved.
Disciplines :
Laboratory medicine & medical technology Biochemistry, biophysics & molecular biology
Author, co-author :
Kallai, Ilan ✱; Hebrew Univ Jerusalem, Hadassah Fac Dent Med, Skeletal Biotech Lab, IL-91120 Jerusalem, Israel.
van Lenthe, G. Harry ✱; ETH, Inst Biomech, Zurich, Switzerland.
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
✱ These authors have contributed equally to this work.
Language :
English
Title :
Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells
Publication date :
2010
Journal title :
Journal of Biomechanics
ISSN :
0021-9290
eISSN :
1873-2380
Publisher :
Elsevier Sci Ltd, Oxford, United Kingdom
Volume :
43
Issue :
12
Pages :
2315-2320
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Institutes of Health [R01AR056694-01A1, R01DE019902-01]
Commentary :
We acknowledge funding from the National Institutes of Health Grants No. R01AR056694-01A1 and R01DE019902-01 (D.C. and G.P.). We thank the Swiss National Supercomputing Centre (CSCS) for granting computational time.
Arbenz P., van Lenthe G.H., Mennel U., Müller R., Sala M. A scalable multi-level preconditioner for matrix-free γ-finite element analysis of human bone structures. Int. J. Numer. Methods Eng. 2008, 73:927-947.
Gazit D., Turgeman G., Kelley P., Wang E., Jalenak M., Zilberman Y., Moutsatsos I. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J. Gene Med. 1999, 1:121-133.
Hasharoni A., Zilberman Y., Turgeman G., Helm G.A., Liebergall M., Gazit D. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J. Neurosurg. Spine 2005, 3:47-52.
Hildebrand T., Laib A., Müller R., Dequeker J., Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 1999, 14:1167-1174.
Homminga J., McCreadie B.R., Weinans H., Huiskes R. The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 2003, 36:1461-1467.
Hsu W.K., Sugiyama O., Park S.H., Conduah A., Feeley B.T., Liu N.Q., Krenek L., Virk M.S., An D.S., Chen I.S., Lieberman J.R. Lentiviral-mediated bmp-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 2007, 40:931-938.
Kabel J., van Rietbergen B., Dalstra M., Odgaard A., Huiskes R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 1999, 32:673-680.
Ladd A.J., Kinney J.H., Haupt D.L., Goldstein S.A. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J. Orthop. Res. 1998, 16:622-628.
Lieberman J.R., Le L.Q., Wu L., Finerman G.A., Berk A., Witte O.N., Stevenson S. Regional gene therapy with a bmp-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J. Orthop. Res. 1998, 16:330-339.
Miller L.M., Little W., Schirmer A., Sheik F., Busa B., Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J. Bone Miner. Res. 2007, 22:1037-1045.
Morgan E.F., Mason Z.D., Chien K.B., Pfeiffer A.J., Barnes G.L., Einhorn T.A., Gerstenfeld L.C. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 2009, 44:335-344.
Moutsatsos I.K., Turgeman G., Zhou S., Kurkalli B.G., Pelled G., Tzur L., Kelley P., Stumm N., Mi S., Müller R., Zilberman Y., Gazit D. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol. Ther. 2001, 3:449-461.
Müller R., Ruegsegger P. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inf. 1997, 40:61-79.
Müller R., Van Campenhout H., Van Damme B., Van Der Perre G., Dequeker J., Hildebrand T., Ruegsegger P. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998, 23:59-66.
Shefelbine S.J., Simon U., Claes L., Gold A., Gabet Y., Bab I., Müller R., Augat P. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone 2005.
Sheyn D., Pelled G., Zilberman Y., Talasazan F., Frank J.M., Gazit D., Gazit Z. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 2008, 26:1056-1064.
Tai K., Pelled G., Sheyn D., Bershteyn A., Han L., Kallai I., Zilberman Y., Ortiz C., Gazit D. Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng. Part A 2008, 14:1709-1720.
Turgeman G., Pittman D.D., Muller R., Kurkalli B.G., Zhou S., Pelled G., Peyser A., Zilberman Y., Moutsatsos I.K., Gazit D. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J. Gene Med. 2001, 3:240-251.
van Lenthe G.H., Voide R., Boyd S.K., Muller R. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone 2008, 43:717-723.
van Rietbergen B., Weinans H., Huiskes R., Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 1995, 28:69-81.
Zilberman Y., Kallai I., Gafni Y., Pelled G., Kossodo S., Yared W., Gazit D. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells. J. Orthop. Res. 2008, 26:522-530.