NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 279 (2014) 379-409, DOI 10.1016/j.cma.2014.06.031
All documents in ORBi are protected by a user license.
Continuous damage mechanics; Fracture; Cohesive zone model; damage to crack transition; discontinuous Galerkin Method; LIMARC
Abstract :
[en] One current challenge related to computational fracture mechanics is the modeling of ductile fracture and in particular the damage to crack transition. On the one hand, continuum damage models, especially in their non-local formulation which avoids the loss of solution uniqueness, can capture the material degradation process up to the localization of the damage, but are unable to represent a discontinuity in the structure.
On the other hand cohesive zone methods can represent the process zone at the crack tip governing the crack propagation, but cannot account for the diffuse material damaging process.
In this paper we propose to combine, in a small deformations setting, a non-local elastic damage model with a cohesive zone model. This combination is formulated within a discontinuous Galerkin nite element discretization. Indeed this DG weak formulation can easily be developed in a non-local implicit form and naturally embeds interface elements that can be used to integrate the traction separation law of the cohesive zone model. The method remains thus consistent and computationally e cient as compared to other cohesive element approaches.
The effects of the damage to crack transition and of the mesh discretization are respectively studied on the compact tension specimen and on the double-notched specimen, demonstrating the efficiency and accuracy of the method.
J. Lemaitre, J.-L. Chaboche, Me´canique des Mate´riaux solides, Dunod, ISBN 2040157867, 1991.
Lemaitre J. Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Engrg. 1985, 51(1-3):31-49. 0045-7825, 10.1016/0045-7825(85)90026-X.
Doghri I. Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. Internat. J. Numer. Methods Engrg. 1995, 38(20):3403-3431. 1097-0207, 10.1002/nme.1620382004.
Bazˇant Z.P., Belytchko T.B., Chang T.P. Continuum theory for strain-softening. J. Eng. Mech. ASCE 1984, 110(12):1666-1692. 10.1061/(ASCE)0733-9399(1984)110:12(1666).
Peerlings R., de Borst R., Brekelmans W., Ayyapureddi S. Gradient-enhanced damage for quasi-brittle materials. Internat. J. Numer. Methods Engrg. 1996, 39:3391-3403.
Geers M. Experimental Analysis and Computational Modelling of Damage and Fracture 1997, (Ph.D. thesis), University of Technology, Eindhoven, Netherlands.
Peerlings R., de Borst R., Brekelmans W., Geers M. Gradient-enhanced damage modelling of concrete fracture. Mech. Cohesive-Frictional Mater. 1998, 3:323-342.
Peerlings R., de Borst R., Brekelmans W., Geers M. Localisation issues in local and nonlocal continuum approaches to fracture. Eur. J. Mech. A/Solids 2002, 21:175-189.
Zbib H.M., Aifantis E.C. A gradient-dependent flow theory of plasticity: application to metal and soil instabilities. Appl. Mech. Rev. 1989, 42(11S):S295-S304. 10.1115/1.3152403.
Barenblatt G. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture 1962, vol. 7:55-129. Elsevier. 10.1016/S0065-2156(08)70121-2.
Dugdale D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8(2):100-104. 0022-5096.
Moe¨s N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing. Internat. J. Numer. Methods Engrg. 1999, 46(1):131-150. http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO2-J. 1097-0207.
Moe¨s N., Belytschko T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002, 69(7):813-833. 0013-7944, 10.1016/S0013-7944(01)00128-X.
Armero F., Linder C. Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int. J. Fract. 2009, 160:119-141. 0376-9429, 10.1007/s10704-009-9413-9.
de Borst R., Gutie´rrez M.A., Wells G.N., Remmers J.J.C., Askes H. Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. Internat. J. Numer. Methods Engrg. 2004, 60(1):289-315. 1097-0207, 10.1002/nme.963.
Hillerborg A., Mode´er M., Petersson P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr. Res. 1976, 6(6):773-781. 0008-8846, 10.1016/0008-8846(76)90007-7.
Needleman A. A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 1987, 54:525-531.
Tvergaard V. Effect of fibre debonding in a Whisker-reinforced metal. Mater. Sci. Eng. A 1990, 125(2):203-213. 0921-5093, 10.1016/0921-5093(90)90170-8.
Xu X.-P., Needleman A. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 1994, 42(9):1397-1434. 0022-5096, 10.1016/0022-5096(94)90003-5.
Camacho G.T., Ortiz M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33(20-22):2899-2938. 0020-7683.
Pandolfi A., Guduru P., Ortiz M., Rosakis A. Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. Int. J. Solids Struct. 2000, 37(27):3733-3760. 0020-7683, 10.1016/S0020-7683(99)00155-9.
Mergheim J., Kuhl E., Steinmann P. A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Commun. Numer. Methods Eng. 2004, 20(7):511-519. URL http://dx.doi.org/10.1002/cnm.689.
Radovitzky R., Seagraves A., Tupek M., Noels L. A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput. Methods Appl. Mech. Engrg. 2011, 200:326-344. 0045-7825, 10.1016/j.cma.2010.08.014.
Prechtel M., Leugering G., Steinmann P., Stingl M. Towards optimization of crack resistance of composite materials by adjustment of fiber shapes. Eng. Fract. Mech. 2011, 78(6):944-960. 0013-7944, 10.1016/j.engfracmech.2011.01.007.
Wu L., Tjahjanto D., Becker G., Makradi A., Je´rusalem A., Noels L. A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng. Fract. Mech. 2013, 104:162-183. 0013-7944, 10.1016/j.engfracmech.2013.03.018.
Becker G., Geuzaine C., Noels L. A one field full discontinuous Galerkin method for Kirchhoff-Love shells applied to fracture mechanics. Comput. Methods Appl. Mech. Engrg. 2011, 200:3223-3241. 0045-7825, 10.1016/j.cma.2011.07.008.
Becker G., Noels L. A full discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications. Internat. J. Numer. Methods Engrg. 2013, 93:80-117. 1097-0207, 10.1002/nme.4381.
Mediavilla J., Peerlings R.H.J., Geers M.G.D. Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Internat. J. Numer. Methods Engrg. 2006, 66(4):661-688. 1097-0207, 10.1002/nme.1572.
Mediavilla J., Peerlings R., Geers M. An integrated continuous-discontinuous approach towards damage engineering in sheet metal forming processes. Eng. Fract. Mech. 2006, 73(7):895-916.
Seabra M.R.R., Sa J.M.C., Andrade F.X., Pires F.F. Continuous-discontinuous formulation for ductile fracture. Int. J. Mater. Form. 2011, 4(3):271-281. 1960-6206, 10.1007/s12289-010-0991-x.
Seabra M.R., Sˇusˇtaricˇ P., Cesar de Sa J.M., Rodicˇ T. Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 2013, 52(1):161-179. 0178-7675, 10.1007/s00466-012-0804-9.
Simone A., Wells G.N., Sluys L.J. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput. Methods Appl. Mech. Engrg. 2003, 192(41-42):4581-4607. 0045-7825, 10.1016/S0045-7825(03)00428-6.
Huespe H., Needleman A., Oliver J., Sa´nchez P. A finite thickness band method for ductile fracture analysis. Int. J. Plast. 2009, 25(12):2349-2365. 0749-6419, 10.1016/j.ijplas.2009.03.005.
Moe¨s N., Stolz C., Bernard P.-E., Chevaugeon N. A level set based model for damage growth: The thick level set approach. Internat. J. Numer. Methods Engrg. 2011, 86(3):358-380. 1097-0207, 10.1002/nme.3069.
Planas J., Elices M., Guinea G. Cohesive cracks versus nonlocal models: closing the gap. Int. J. Fract. 1993, 63(2):173-187. 0376-9429, 10.1007/BF00017284.
Mazars J., Pijaudier-Cabot G. From damage to fracture mechanics and conversely: a combined approach. Int. J. Solids Struct. 1996, 33(20-22):3327-3342. 0020-7683, 10.1016/0020-7683(96)00015-7.
Cazes F., Coret M., Combescure A., Gravouil A. A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. Int. J. Solids Struct. 2009, 46(6):1476-1490. 0020-7683, 10.1016/j.ijsolstr.2008.11.019.
Comi C., Mariani S., Perego U. An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int. J. Numer. Anal. Methods Geomech. 2007, 31(2):213-238. 1096-9853, 10.1002/nag.537.
Cuvilliez S., Feyel F., Lorentz E., Michel-Ponnelle S. A finite element approach coupling a continuous gradient damage model and a cohesive zone model within the framework of quasi-brittle failure. Comput. Methods Appl. Mech. Engrg. 2012, 237-240(0):244-259. 0045-7825, 10.1016/j.cma.2012.04.019.
Arias I., Knap J., Chalivendra V.B., Hong S., Ortiz M., Rosakis A.J. Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput. Methods Appl. Mech. Engrg. 2007, 196(37-40):3833-3840. 0045-7825, 10.1016/j.cma.2006.10.052.
Molinari J.F., Gazonas G., Raghupathy R., Rusinek A., Zhou F. The cohesive element approach to dynamic fragmentation: the question of energy convergence. Internat. J. Numer. Methods Engrg. 2007, 69(3):484-503. 1097-0207, 10.1002/nme.1777.
Mazars J., Pijaudier-Cabot G. Continuum damage theory-application to concrete. J. Eng. Mech. 1989, 115(2):345-365. 10.1061/(ASCE)0733-9399(1989)115:2(345).
Geers M., de Borst R., Brekelmans W., Peerlings R. Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene. Int. J. Solids Struct. 1999, 36(17):2557-2583. 0020-7683.
Peerlings R., Geers M., de Borst R., Brekelmans W. A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 2001, 38:7723-7746.
Wu L., Noels L., Adam L., Doghri I. An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int. J. Solids Struct. 2013, 50(24):3843-3860. 0020-7683.
Dufour F., Pijaudier-Cabot G., Choinska M., Huerta A. Extraction of a crack opening from a continuous approach using regularized damage models. Comput. Concr. 2008, 5(4):375-388.
Pandolfi A., Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng. Comput. 2002, 18(2):148-159. URL: http://dx.doi.org/10.1007/s003660200013.
Tvergaard V., Hutchinson J.W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 1992, 40(6):1377-1397. 0022-5096, 10.1016/0022-5096(92)90020-3.
Remmers J.J., Borst R., Verhoosel C.V., Needleman A. The cohesive band model: a cohesive surface formulation with stress triaxiality. Int. J. Fract. 2013, 181(2):177-188. 0376-9429, 10.1007/s10704-013-9834-3.
Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: part i-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99(1):2-15. 10.1115/1.3443401.
McBride A., Mergheim J., Javili A., Steinmann P., Bargmann S. Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch. J. Mech. Phys. Solids 2012, 60(6):1221-1239. 0022-5096, 10.1016/j.jmps.2012.01.003.
Noels L., Radovitzky R. A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Internat. J. Numer. Methods Engrg. 2006, 68(1):64-97. 1097-0207, 10.1002/nme.1699.
Eyck A.T., Lew A. Discontinuous Galerkin methods for non-linear elasticity. Internat. J. Numer. Methods Engrg. 2006, 67(9):1204-1243. 1097-0207, 10.1002/nme.1667.
Noels L., Radovitzky R. An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Internat. J. Numer. Methods Engrg. 2008, 74(9):1393-1420. 1097-0207, 10.1002/nme.2213.
A. Lew, A. Eyck, R. Rangarajan, Some Applications of Discontinuous Galerkin Methods in Solid Mechanics, IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, 2008, pp. 227-236. http://dx.doi.org/10.1007/978-1-4020-9090-5_21.
Eyck A.T., Celiker F., Lew A. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput. Methods Appl. Mech. Engrg. 2008, 197(45-48):3605-3622. 0045-7825.
Hulbert G.M., Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Engrg. 1996, 137(2):175-188. 0045-7825, 10.1016/S0045-7825(96)01036-5.
Geuzaine C., Remacle J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 2009, 79(11):1309-1331. 10.1002/nme.2579.
Noels L., Radovitzky R. A new discontinuous Galerkin method for Kirchhoff-Love shells. Comput. Methods Appl. Mech. Engrg. 2008, 197(33-40):2901-2929. 0045-7825, 10.1016/j.cma.2008.01.018.
Molinari J.-F. Dynamic Fracture: Discrete Versus Continuum Damage Modeling. The Third International Conference on Computational Modeling of Fracture and Failure of Materials and Structures 2013, Czech Republic, Prague, 5-7 June 2013.