[en] Animal models are widely used to gain insight into the role of genetics on bone structure and function. One of the main strategies to map the genes regulating specific traits is called quantitative trait loci (QTL) analysis, which generally requires a very large number of animals (often more than 1000) to reach statistical significance. QTL analysis for mechanical traits has been mainly based on experimental mechanical testing, which, in view of the large number of animals, is time consuming. Hence, the goal of the present work was to introduce an automated method for large-scale high-throughput quantification of the mechanical properties of murine femora. Specifically, our aims were, first, to develop and validate an automated method to quantify murine femoral bone stiffness. Second, to test its high-throughput capabilities on murine femora from a large genetic study, more specifically, femora from two growth hormone (GH) deficient inbred strains of mice (B6-lit/lit and C3.B6-lit/lit) and their first (F1) and second (F2) filial offsprings. Automated routines were developed to convert micro-computed tomography (micro-CT) images of femora into micro-finite element (micro-FE) models. The method was experimentally validated on femora from C57BL/6J and C3H/HeJ mice: for both inbred strains the micro-FE models closely matched the experimentally measured bone stiffness when using a single tissue modulus of 13.06 GPa. The mechanical analysis of the entire dataset (n = 1990) took approximately 44 CPU hours on a supercomputer. In conclusion, our approach, in combination with QTL analysis could help to locate genes directly involved in controlling bone mechanical competence. (C) 2013 Elsevier Inc. All rights reserved.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
van Lenthe, G. H.; Swiss Fed Inst Technol, Inst Biomech, CH-8093 Zurich, Switzerland.
Language :
English
Title :
High-throughput quantification of the mechanical competence of murine femora - A highly automated approach for large-scale genetic studies
Publication date :
2013
Journal title :
BONE
ISSN :
8756-3282
eISSN :
1873-2763
Publisher :
Elsevier Science Inc, New York, United States - New York
Volume :
55
Issue :
1
Pages :
216-221
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Roche Research Foundation [76-2004] Swiss National Supercomputing Centre (CSCS, Lugano, Switzerland)
Commentary :
The authors acknowledge the support of the Roche Research Foundation (grant 76-2004) and the Swiss National Supercomputing Centre (CSCS, Lugano, Switzerland).
Currey J.D. Bones: structure and mechanics 2002, Princeton University Press, Princeton, N.J.
Nazarian A., Stauber M., Zurakowski D., Snyder B.D., Müller R. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 2006, 39:1196-1202.
Schneider P., Stauber M., Voide R., Stampanoni M., Donahue L.R., Müller R. Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 2007, 22:1557-1570.
Fratzl P., Gupta H.S., Paschalis E.P., Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 2004, 14:2115-2123.
Roschger P., Paschalis E.P., Fratzl P., Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008, 42:456-466.
Mckay H.A., Bailey D.A., Wilkinson A.A., Houston C.S. Familial comparison of bone-mineral density at the proximal femur and lumbar spine. Bone Miner 1994, 24:95-107.
Koller D.L., Econs M.J., Morin P.A., Christian J.C., Hui S.L., Parry P., et al. Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 2000, 85:3116-3120.
Turner C.H., Hsieh Y.F., Müller R., Bouxsein M.L., Baylink D.J., Rosen C.J., et al. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 2000, 15:1126-1131.
Turner C.H., Hsieh Y.F., Müller R., Bouxsein M.L., Rosen C.J., McCrann M.E., et al. Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J Bone Miner Res 2001, 16:206-213.
Akhter M.P., Fan Z., Rho J.Y. Bone intrinsic material properties in three inbred mouse strains. Calcif Tissue Int 2004, 75:416-420.
Raum K., Hofmann T., Leguerney I., Saied A., Peyrin F., Vico L., et al. Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice. Bone 2007, 41:1017-1024.
Ng A.H.M., Wang S.X., Turner C.H., Beamer W.G., Grynpas M.D. Bone quality and bone strength in BXH recombinant inbred mice. Calcif Tissue Int 2007, 81:215-223.
Seeman E., Tsalamandris C., Formica C., Hopper J.L., Mckay J. Reduced femoral-neck bone-density in the daughters of women with hip-fractures - the role of low peak bone-density in the pathogenesis of osteoporosis. J Bone Miner Res 1994, 9:739-743.
Peacock M., Turner C.H., Econs M.J., Foroud T. Genetics of osteoporosis. Endocr Rev 2002, 23:303-326.
Cummings S.R., Nevitt M.C., Browner W.S., Stone K., Fox K.M., Ensrud K.E., et al. Risk-factors for hip fracture in white women. N Engl J Med 1995, 332:767-773.
Rosen C.J., Beamer W.G., Donahue L.R. Defining the genetics of osteoporosis: using the mouse to understand man. Osteoporos Int 2001, 12:803-810.
Silver L.M. Mouse genetics 1995, Oxford University Press Inc., New York.
Bouxsein M.L., Uchiyama T., Rosen C.J., Shultz K.L., Donahue L.R., Turner C.H., et al. Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res 2004, 19:587-599.
Zeng Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136:1457-1468.
Kohler T., Beyeler M., Webster D., Müller R. Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements. Calcif Tissue Int 2005, 77:281-290.
Kohler T., Stauber M., Donahue L.R., Müller R. Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models. Bone 2007, 41:659-667.
Chua S.C., Hennessey K., Zeitler P., Leibel R.L. The little (lit) mutation cosegregates with the growth-hormone releasing-factor receptor on mouse chromosome-6. Mamm Genome 1993, 4:555-559.
Wergedal J.E., Ackert-Bicknell C.L., Tsaih S.W., Sheng M.H.C., Li R., Mohan S., et al. Femur mechanical properties in the F-2 progeny of an NZB/B1NJ×RF/J cross are regulated predominantly by genetic loci that regulate bone geometry. J Bone Miner Res 2006, 21:1256-1266.
Alam I., Sun Q.W., Liu L.X., Koller D.L., Fishburn T., Carr L.G., et al. Whole-genome scan for linkage to bone strength and structure in inbred Fischer 344 and Lewis rats. J Bone Miner Res 2005, 20:1589-1596.
Turner C.H., Burr D.B. Basic biomechanical measurements of bone - a tutorial. Bone 1993, 14:595-608.
Sharir A., Barak M.M., Shahar R. Whole bone mechanics and mechanical testing. Vet J 2008, 177:8-17.
Vashishth D. Small animal bone biomechanics. Bone 2008, 43:794-797.
Voide R., van Lenthe G.H., Müller R. Femoral stiffness and strength critically depend on loading angle: a parametric study in a mouse-inbred strain. Biomed Tech 2008, 53:122-129.
Jamsa T., Jalovaara P., Peng Z., Vaananen H.K., Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone 1998, 23:155-161.
Verhulp E., van Rietbergen B., Huiskes R. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 2008, 42:30-35.
van Rietbergen B., Weinans H., Huiskes R., Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 1995, 28:69.
Ruffoni D., Wirth A.J., Steiner J.A., Parkinson I.H., Müller R., van Lenthe G.H. The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone 2012, 50:733-738.
Verhulp E., van Rietbergen B., Müller R., Huiskes R. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 2008, 41:1479-1485.
Voide R., van Lenthe G.H., Müller R. Differential effects of bone structural and material properties on bone competence in C57BL/6 and C3H/He inbred strains of mice. Calcif Tissue Int 2008, 83:61-69.
Fischer-Cripps A.C. Introduction to contact mechanics 2007, Springer Science+Business Media, New York.
van Lenthe G.H., Voide R., Boyd S.K., Müller R. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone 2008, 43:717-723.
Arbenz P., van Lenthe G.H., Mennel U., Müller R., Sala M. A scalable multi-level preconditioner for matrix-free mu-finite element analysis of human bone structures. Int J Numer Methods Eng 2008, 73:927-947.
Beamer W.G., Eicher E.M. Stimulation of growth in little mouse. J Endocrinol 1976, 71:37-45.
Donahue L.R., Guido V.E., Rosen C.J., Horton L.G., Ackert-Bicknell C.L., Bouxsein M.L., et al. GH/IGF-I independent genetic effects on BMD and skeletal morphology are both gender dependent and independent. J Bone Miner Res 2003, 18:S123.
Klein R.F., Turner R.J., Skinner L.D., Vartanian K.A., Serang M., Carlos A.S., et al. Mapping quantitative trait loci that influence femoral cross-sectional area in mice. J Bone Miner Res 2002, 17:1752-1760.
Courtland H.W., Nasser P., Goldstone A.B., Spevak L., Boskey A.L., Jepsen K.J. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition. Calcif Tissue Int 2008, 83:342-353.
Turner C.H., Rho J., Takano Y., Tsui T.Y., Pharr G.M. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 1999, 32:437-441.